Skip to main content
Log in

Fermat-type equations of signature \((13,13,p)\) via Hilbert cuspforms

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we prove that for \(p > 13649\) equations of the form \(x^{13} + y^{13} = Cz^{p}\) have no non-trivial primitive solutions \((a,b,c)\) such that \(13 \not \mid c\) for an infinite family of values for \(C\). Our method consists on relating a solution \((a,b,c)\) to the previous equation to a solution \((a,b,c_1)\) of another Diophantine equation with coefficients in \(\mathbb Q (\sqrt{13})\). Then we attach to \((a,b,c_1)\) a Frey curve \(E_{(a,b)}\) defined over \(\mathbb Q (\sqrt{13})\) that is not a \(\mathbb Q \)-curve. We prove a modularity result of independent interest for certain elliptic curves over totally real abelian number fields satisfying some local conditions at \(3\). This theorem, in particular, implies modularity of \(E_{(a,b)}\). This enables us to use level lowering results and apply the modular approach via Hilbert cuspforms over \(\mathbb Q (\sqrt{13})\) to prove the non-existence of \((a,b,c_1)\) and, consequently, of \((a,b,c)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, M., Chen, I.: Multi-Frey \(\mathbb{Q}\)-curves and the Diophantine equation \(a^2 + b^6 = c^p\). Algebra Number Theory 6(4), 707–730 (2012)

  2. Bennett, M.A., Ellenberg, J.S., Nathan, C.N.: The Diophantine equation \(A^4+2^\delta B^2=C^n\). Int. J. Number Theory 6(2), 311–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billerey, N.: Équations de Fermat de type \((5,5, p)\). Bull. Austral. Math. Soc. 76(2), 161–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billerey, N., Dieulefait, L.V.: Solving Fermat-type equations \(x^5+y^5=dz^p\). Math. Comp. 79(269), 535–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I: The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breuil, C.: \(p\)-adic Hodge theory, deformations and local Langlands. notes of a course at CRM, Bellaterra, Spain, July 2001. http://www.math.u-psud.fr/breuil/PUBLICATIONS/Barcelone.pdf

  7. Bruin, N.: On powers as sums of two cubes. Algorithmic number theory (Leiden, 2000), volume 1838 of Lecture Notes in Comput. Sci., pp. 169–184. Springer, Berlin (2000)

  8. Buzzard, K., Diamond, F., Jarvis, F.: On Serre’s conjecture for mod \(\ell \) Galois representations over totally real fields. Duke Math. J. 155(1), 105–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, I., Siksek, S.: Perfect powers expressible as sums of two cubes. J. Algebra 322(3), 638–656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahmen, S.: Classical and modular methods applied to Diophantine equations. PhD thesis, University of Utrecht.http://igitur-archive.library.uu.nl/dissertations/2008-0820-200949/UUindex.html (2008)

  11. Darmon, H., Granville, A.: On the equations \(z^m=F(x, y)\) and \(Ax^p+By^q=Cz^r\). Bull. London Math. Soc. 27(6), 513–543 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deligne, P., Serre, J.-P.: Formes modulaires de poids \(1\). Ann. Sci. École Norm. Sup. 7(4), 507–530 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Dembélé, L., Voight, J.: Explicit methods for Hilbert modular forms. Elliptic curves, Hilbert modular forms and Galois deformations. In: Diamond, F., et al. (eds.) Birkhauser, Progress in Mathematics (2013, to appear)

  14. Dieulefait, L., Freitas, N.: The Fermat-type equations \(x^5 + y^5 = 2z^p\) or \(3z^p\) solved through \(\mathbb{Q}\)-curves. Math. Comp. (2013, to appear)

  15. Ellenberg, J.S.: Galois representations attached to \(\mathbb{Q}\)-curves and the generalized Fermat equation \(A^4+B^2=C^p\). Am. J. Math. 126(4), 763–787 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freitas, N.: Recipes to Fermat-type equations of the form \((x^{r}+y^{r}=Cz^{p})\) (2013, Preprint). Available at http://arxiv.org/abs/1203.3371

  17. Fujiwara, K.: Level optimization in the totally real case (2006, Preprint). Available at http://arxiv.org/abs/math/0602586

  18. Gelbart, S.: Three lectures on the modularity of \(\overline{\rho }_{E,3}\) and the Langlands reciprocity conjecture. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 155–207. Springer, New York

  19. Jarvis, F.: Correspondences on Shimura curves and Mazur’s principle at \(p\). Pacific J. Math. 213(2), 267–280 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jarvis, F., Meekin, P.: The Fermat equation over \({\mathbb{Q}}(\sqrt{2})\). J. Number Theory 109(1), 182–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kisin, M.: Modularity of 2-dimensional Galois representations. In: Current developments in mathematics, 2005, pp. 191–230. International Press, Somerville (2007)

  22. Kraus, A.: Sur l’équation \(a^3+b^3=c^p\). Experiment. Math. 7(1), 1–13 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kraus, A.: On the equation \(x^p+y^q=z^r\): a survey. Ramanujan J. 3(3), 315–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papadopoulos, I.: Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle \(2\) et \(3\). J. Number Theory 44(2), 119–152 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jordi, Q.: \({\mathbb{Q}}\)-curves and abelian varieties of \({\rm GL}_2\)-type. Proc. London Math. Soc. (3) 81(2), 285–317 (2000)

  26. Rajaei, A.: On the levels of mod \(l\) Hilbert modular forms. J. Reine Angew. Math. 537, 33–65 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Savitt, D.: On a conjecture of Conrad, Diamond, and Taylor. Duke Math. J. 128(1), 141–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math (1999), 89:5–126 (2000)

    Google Scholar 

  29. Skinner, C.M., Wiles, A.J.: Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. (6) 10(1), 185–215 (2001)

    Google Scholar 

  30. Wiles, A.: On ordinary \(\lambda \)-adic representations associated to modular forms. Invent. Math. 94(3), 529–573 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    Google Scholar 

Download references

Acknowledgments

The authors want to thank John Voight for performing multiple computations that were fundamental to finish this work and John Cremona for providing a list of elliptic curves that was useful to test our strategy. We also want to thank the anonymous referee for many comments and suggestions. The second author is also indebted to Ariel Pacetti for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Freitas.

Additional information

L. Dieulefait supported by project MICINN MTM2009-07024 from MECD, Spain, and ICREA Academia Research Prize.

N. Freitas supported by the scholarship with reference \(SFRH/BD/44283/2008\) from Fundaçao para a Ciência e a Tecnologia, Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieulefait, L., Freitas, N. Fermat-type equations of signature \((13,13,p)\) via Hilbert cuspforms. Math. Ann. 357, 987–1004 (2013). https://doi.org/10.1007/s00208-013-0920-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0920-7

Mathematics Subject Classification (2010)

Navigation