Skip to main content
Log in

Deformation of scalar curvature and volume

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The stationary points of the total scalar curvature functional on the space of unit volume metrics on a given closed manifold are known to be precisely the Einstein metrics. One may consider the modified problem of finding stationary points for the volume functional on the space of metrics whose scalar curvature is equal to a given constant. In this paper, we localize a condition satisfied by such stationary points to smooth bounded domains. The condition involves a generalization of the static equations, and we interpret solutions (and their boundary values) of this equation variationally. On domains carrying a metric that does not satisfy the condition, we establish a local deformation theorem that allows one to achieve simultaneously small prescribed changes of the scalar curvature and of the volume by a compactly supported variation of the metric. We apply this result to obtain a localized gluing theorem for constant scalar curvature metrics in which the total volume is preserved. Finally, we note that starting from a counterexample of Min-Oo’s conjecture such as that of Brendle–Marques–Neves, counterexamples of arbitrarily large volume and different topological types can be constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Given an integer \(k \ge 1\) and \(\alpha \in (0, 1)\), a \(C^{k, \alpha }\) Riemannian manifold \((M,g)\) consists of a smooth manifold \(M\), possibly with non-empty boundary, and a tensor field \(g \in C^{k, \alpha } (\text{ Sym}^2(T^*M))\) that is everywhere positive definite.

References

  1. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  2. Bray, H., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brendle, S., Marques, F., Neves, A.: Deformations for the hemisphere that increase the scalar curvature. Invent. Math. 185(1), 175–197 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.) 94, 1–103 (2003)

    Google Scholar 

  5. Chruściel, P.T., Isenberg, J., Pollack, D.: Initial data engineering. Comm. Math. Phys. 257(1), 29–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chruściel, P.T., Pacard, F., Pollack, D.: Singular Yamabe metrics and initial data with exactly Kotter-Schwarzschild-de Sitter ends. II. Generic metrics. Math. Res. Lett. 16(1), 157–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214, 137–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corvino, J., Pollack, D.: Scalar curvature and the Einstein constraint equations. In: Bray, H.L., Minicozzi, W.P. II (eds.) Surveys in Geometric Analysis and Relativity. Adv. Lect. Math. 20, 145–188 (2011)

  9. Corvino, J., Schoen, R.M.: On the asymptotics of the vacuum Einstein constraint equations. J. Differ. Geom. 73(2), 185–217 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Delay, E.: Localized gluing of Riemannian metrics in interpolating their scalar curvature. Differ. Geom. Appl. 29(3), 433–439 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foote, R.: Regularity of the distance function. Proc. Amer. Math. Soc. 92(1), 153–155 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Gromov, M., Lawson, H.B. Jr.: The classification of simply connected manifolds of positive scalar curvature. Ann. of Math. (2) 111(3), 423–434 (1980).

    Google Scholar 

  13. Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations. Comm. Math. Phys. 231(3), 529–568 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Isenberg, J., Maxwell, D., Pollack, D.: A gluing construction for non-vacuum solutions of the Einstein constraint equations. Adv. Theor. Math. Phys. 9(1), 129–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Joyce, D.: Constant scalar curvature metrics on connected sums. Int. J. Math. Math. Sci. 7, 405–450 (2003)

    Article  MathSciNet  Google Scholar 

  16. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. Math. 101(2), 317–331 (1975)

    Google Scholar 

  17. Kazdan, J.L., Warner, F.W.: A direct approach to the determination of Gaussian and scalar curvature functions. Invent. Math. 28, 227–230 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mazzeo, R., Pollack, D., Uhlenbeck, K.: Connected sum constructions for constant scalar curvature metrics. Topol. Methods Nonlinear Anal. 6(2), 207–233 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Miao, P., Shi, Y.-G., Tam, L.-F.: On geometric problems related to Brown-York and Liu-Yau quasilocal mass. Comm. Math. Phys. 298(2), 437–459 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miao, P., Tam, L.-F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. Partial Differ. Equ. 36(2), 141–171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miao, P., Tam, L.-F.: Einstein and conformally flat critical metrics of the volume functional. Trans. Amer. Math. Soc. 363, 2907–2937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miao, P., Tam, L.-F.: Scalar curvature rigidity with a volume constraint. Comm. Anal. Geom. 20(1), 1–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Min-Oo, M.: Scalar curvature rigidity of certain symmetric spaces. In: Lalonde, F. (ed.) Geometry, topology, and dynamics (Montreal, 1995). CRM Proc. Lecture Notes (Amer. Math. Soc., Providence RI), vol. 15, pp. 127–136 (1998)

  24. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schoen, R.M.: The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Comm. Pure Appl. Math. 41, 317–392 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schoen, R.M., Yau, S.-T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28(1–3), 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schneider, R., Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge (1993)

  29. Shen, Y.: A note on Fischer-Marsden’s conjecture. Proc. Amer. Math. Soc. 125(3), 901–905 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shi, Y.-G., Tam, L.-F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Tam, L.-F.: Private communication (2010)

  32. Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80, 381–402 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Brendle, R. Mazzeo, D. Pollack, R. M. Schoen and L.-F. Tam for useful discussions on various aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Corvino.

Additional information

The first author was partially supported by the NSF through grants DMS-0707317 and DMS-1207844, and by a Simons Foundation Collaboration Grant. The second author was partially supported by the NSF through grant DMS-0906038 and by the SNF through grant 2-77348-12. The third author was partially supported by the ARC through grant DP0987650 and by a 2011 Provost Research Award of the University of Miami.

Appendices

Appendix A. Schauder theory

Here we discuss interior Schauder estimates in weighted spaces, following Chruściel and Delay [4, Appendix B], for the particular example of the operator \(u \mapsto P(u):= \rho ^{-1}L_g\rho L_g^* u\). Note that, in local coordinates, \(P(u)\) has the form

$$\begin{aligned} (n-1)\Delta _g^2 u + \sum \limits _{|\beta |\le 3} b_{\beta } D^{\beta } u. \end{aligned}$$

Recall that the weight \(\rho \) is a smooth function that behaves like \(e^{- 1/d}\) near \(\partial \Omega \). It is easy to check that \(||b_{\beta }||_{C^{0, \alpha }_{\phi , \phi ^{4 - |\beta |} }} < \infty \). By appropriate scaling, one can obtain interior Schauder estimates on small balls near the boundary of \(\Omega \) from interior Schauder estimates on balls of a fixed size for an operator whose coefficients are well controlled. The weighted Hölder norms defined in Sect. 3.1 are designed for this purpose.

For simplicity, we assume that we are working in \(\mathbb R ^n\) with the standard metric, and that \(x\) is close to \(\partial \Omega \) so that \(\phi (x)=d(x)^2\). For \(z\in B(0,1)\), let \(y= x+\phi (x) z\), and for any \(f\), let \(\tilde{f}(z)= f(x+\phi (x)z)=f(y)\). Then \(D_z\tilde{u}|_z = \phi (x)D_y u|_{x+\phi (x) z}\). We compute that

$$\begin{aligned} (Pu) (x+\phi (x)z)&= (n-1)\Delta ^2_y u \big |_{x+\phi (x) z}+ \sum \limits _{|\beta |\le 3} b_{\beta } D_y^{\beta } u\big |_{x+\phi (x) z}\\&= \phi (x)^{-4} (n-1)\Delta ^2_z \tilde{u}\big |_z+ \sum \limits _{|\beta |\le 3} \phi (x)^{-|\beta |} \tilde{b}_{\beta }(z) D^{\beta }_z \tilde{u} \big |_z. \end{aligned}$$

We obtain that

$$\begin{aligned} \phi (x)^4 \widetilde{Pu}(z)= \left( (n-1) \Delta ^2_z+ \sum \limits _{|\beta |\le 3} \phi (x)^{4-|\beta |} \tilde{b}_{\beta }(z) D_z^{\beta }\right) \tilde{u} =: \tilde{P} \tilde{u} (z). \end{aligned}$$

We see that \(\tilde{P}\) is uniformly elliptic on \(B(0,1)\) and has coefficients that are bounded in \(C^{0, \alpha }\) by bounds for \(\Vert b_{\beta }\Vert _{C^{0, \alpha }_{\phi , \phi ^{4-|\beta |}}}\). The standard interior Schauder estimate gives

$$\begin{aligned} \Vert \tilde{u}\Vert _{C^{4, \alpha }(B(0, \frac{1}{4}))}&\le C \left(\Vert \tilde{P} \tilde{u} \Vert _{C^{0,\alpha }(B(0, \frac{1}{2}))} + \Vert \tilde{u} \Vert _{L^2(B(0, \frac{1}{2}))}\right) \\&\le C \left( \phi (x)^4 \Vert \widetilde{Pu} \Vert _{C^{0,\alpha }(B(0, \frac{1}{2}))} + \Vert \tilde{u} \Vert _{L^2(B(0, \frac{1}{2}))}\right). \end{aligned}$$

Scaling back, we see that

$$\begin{aligned}&\sum \limits _{j=0}^4 \phi (x)^j \Vert \nabla ^j_g u\Vert _{C^{0, \alpha }(B(x, \frac{\phi (x)}{4}))} + \phi (x)^{4+\alpha } [\nabla _g^4 u]_{0,\alpha ;B(x, \frac{\phi (x)}{4})} \\&\quad \le C \left( \phi (x)^4 \Vert Pu \Vert _{C^0(B(x, \frac{\phi (x)}{2}))}+\phi (x)^{4+\alpha }[Pu]_{0,\alpha ;B(x, \frac{\phi (x)}{2})} +\phi (x)^{-\frac{n}{2}} \Vert u \Vert _{L^2(B(x, \frac{\phi (x)}{2}))}\right)\!. \end{aligned}$$

We can multiply this inequality by \(\varphi (x)\) where \(\varphi =\phi ^r \rho ^s\) to obtain the following weighted estimate on \(\Omega \):

$$\begin{aligned} \Vert u\Vert _{C^{4, \alpha }_{\phi , \varphi }}\le C (\Vert Pu\Vert _{C^{0,\alpha }_{\phi , \phi ^4 \varphi }}+ \Vert u\Vert _{L^2_{\phi ^{-n}\varphi ^2}}). \end{aligned}$$
(7.1)

This estimate is similar to that in [4, Appendix B]. Note that we impose slightly different conditions on the lower order coefficients here, and that we use a different convention for the weighted \(L^2\) norms. As for higher regularity, we obtain similarly that

$$\begin{aligned} \Vert u\Vert _{C^{k+4, \alpha }_{\phi , \varphi }}\le C (\Vert Pu\Vert _{C^{k,\alpha }_{\phi , \phi ^4 \varphi }}+ \Vert u\Vert _{L^2_{\phi ^{-n}\varphi ^2}}) \end{aligned}$$
(7.2)

where the constant \(C\) depends on the domain, the weight, and bounds for \(\Vert b_{\beta }\Vert _{C^{k, \alpha }_{\phi , \phi ^{4-|\beta |}}}\).

Appendix B. Proof of Proposition 4.6

Here we sketch the proof of Proposition 4.6, which is similar to that of [13, Proposition 6] and [14, Proposition 3.6].

Recall that \([-\frac{T}{2}, \frac{T}{2}]\times \mathbb S ^{n-1} \cong C_T\subset \Sigma _T\). In the proof below, Hölder norms on \(C_T\) or \(Q:= [-1,1]\times \mathbb S ^{n-1} \subset C_T\) are indicated with an additional subscript.

Proof

We recall that on \(\Sigma _T{\setminus } C_T\), \(\mathcal{N }_T(\Psi _T)=0\), and that on \([-\frac{T}{2}+1,\frac{T}{2}-1]\times \mathbb S ^{n-1}\), \(\Psi _T(s, \theta )=2 R^{\frac{n-2}{2}} e^{-\frac{(n-2)T}{4}} \cosh \big ( \tfrac{(n-2)s}{2}\big ).\) Let \(\mathring{\gamma }= ds^2 + g_\mathbb{S ^{n-1}}\) be the standard cylindrical metric. Then \(\Psi _T\) solves the equation \((-\Delta _{\mathring{\gamma }} + c_n R(\mathring{\gamma }))( \Psi _T) =0\) on \([-\frac{T}{2}+1,\frac{T}{2}-1]\times \mathbb S ^{n-1}\). Therefore, by (4.1) and Lemma 4.3, we have

$$\begin{aligned} \begin{aligned} \Vert \Delta _{\gamma _T}f-\Delta _{\mathring{\gamma }}f\Vert _{k-2, \alpha ,C_T}&\lesssim e^{-T} \cosh 2s \Vert f\Vert _{k, \alpha , C_T} \\ \Vert R(\gamma _T)-R(\mathring{\gamma })\Vert _{k-2, \alpha , C_T}&\lesssim e^{-T} \cosh 2s . \end{aligned} \end{aligned}$$
(8.1)

On \(Q\cong [-1,1]\times \mathbb S ^{n-1}\), (8.1) implies \(\Vert \mathcal{N }_T(\Psi _T)\Vert _{k-2, \alpha , Q}\lesssim e^{-\frac{(n+2)T}{4}}.\) This completes the estimate on \(Q\).

We now consider \(C_T{\setminus } Q \cong ([-\frac{T}{2}, -1]\times \mathbb S ^{n-1})\cup ([1, \frac{T}{2}]\times \mathbb S ^{n-1})\). The estimates on the two components are similar. We will do one of them.

Recall that on \([1, \frac{T}{2}]\times \mathbb S ^{n-1}\) we have that \(\gamma _T= \Psi _2^{-{4/(n-2)}} \gamma _2\) and \(\Psi _T(s, \theta )=\chi _{1,T}(s)\psi (R e^{-s- \frac{T}{2}})+ \chi _{2,T}(s) \psi ( R e^{s - \frac{T}{2}})\). Moreover, \(\mathcal{N }_T(\Psi _2)=0\) in this region, so that

$$\begin{aligned} \mathcal{N }_T(\Psi _T)= (-\Delta _{\gamma _T} +c_n R(\gamma _T))(\chi _{1,T} \Psi _1) -c_n \sigma _n \Psi _T^{\frac{n+2}{n-2}} +c_n\sigma _n \Psi _2^{\frac{n+2}{n-2}}. \end{aligned}$$

We write the last two terms using \(\Psi _T^{\frac{n+2}{n-2}}- \Psi _2^{\frac{n+2}{n-2}}= \Psi _2^{\frac{n+2}{n-2}} \left( \Big ( 1+ \chi _{1,T} \frac{ \Psi _1}{\Psi _2}\Big )^{\frac{n+2}{n-2}} - 1\right).\) Since also \(\frac{\Psi _1}{\Psi _2}= e^{-s(n-2)}\) and \(\Psi _2^{\frac{n+2}{n-2}}= (Re^{s-\frac{T}{2}})^{\frac{n+2}{2}}\) in this region, we obtain that

$$\begin{aligned} \left| \Psi _T^{\frac{n+2}{n-2}}- \Psi _2^{\frac{n+2}{n-2}} \right|\lesssim \Psi _2^{\frac{n+2}{n-2}}\cdot \frac{\Psi _1}{\Psi _2}&\lesssim e^{-s\frac{n-6}{2}} e^{-\frac{(n+2)T}{4}}. \end{aligned}$$
(8.2)

On \([1, \frac{T}{2}-1]\times \mathbb S ^{n-1}\), (8.2) shows

$$\begin{aligned} \Big | \Psi _T^{\frac{n+2}{n-2}}&- \Psi _2^{\frac{n+2}{n-2}} \Big | \lesssim {\left\{ \begin{array}{ll} e^{-\frac{(n+2)T}{4}}&\quad \text{ for}\; n > 6 \\ e^{-\frac{(n-2)T}{2}}&\quad \text{ for}\; n \le 6 \end{array}\right.} \end{aligned}$$

while on \([\frac{T}{2}-1, \frac{T}{2}]\times \mathbb S ^{n-1}\), (8.2) gives that

$$\begin{aligned} \left| \Psi _T^{\frac{n+2}{n-2}}- \Psi _2^{\frac{n+2}{n-2}} \right|\lesssim e^{-\frac{(n-2)T}{2}}. \end{aligned}$$

The required Hölder bounds of \(\Vert \Psi _T^{\frac{n+2}{n-2}}- \Psi _2^{\frac{n+2}{n-2}} \Vert _{k-2,\alpha ,C_T}\) follow analogously.

It remains to estimate \(\Vert (-\Delta _{\gamma _T} + c_n R(\gamma _T))(\chi _{1,T}\Psi _1)\Vert _{k-2,\alpha ,C_T}\). We first estimate on \([1, \frac{T}{2}-1]\times \mathbb S ^{n-1}\), where \(\chi _{1,T}=1\). Using this along with (8.1) and the fact that \(\Psi _1\) is in the kernel of the conformal Laplacian on the cylinder, we obtain

$$\begin{aligned}&\Big |(-\Delta _{\gamma _T} + c_n R(\gamma _T))(\chi _{1,T}\Psi _1) \Big | \\&\quad = \Big | (-\Delta _{\gamma _T} + c_n R(\gamma _T))(\Psi _1)- (-\Delta _{\mathring{\gamma }} + c_n R(\mathring{\gamma }))(\Psi _1) \Big | \\&\quad \lesssim e^{-T} \cosh (2s)\Vert \Psi _1\Vert _{C^2(C_T)}\\&\quad \lesssim e^{s(2-\frac{n-2}{2})}e^{-T}e^{-\frac{(n-2)T}{4}}\\&\quad \lesssim {\left\{ \begin{array}{ll} e^{-T}e^{-\frac{(n-2)T}{4}} = e^{ - \frac{(n+2)}{4} T }&\quad \text{ for}\; n > 6 \\ e^{(1-\frac{n-2}{4})T} e^{-T}e^{-\frac{(n-2)T}{4}}= e^{-\frac{(n-2)T}{2}}&\quad \text{ for}\; n \le 6 . \end{array}\right.} \end{aligned}$$

For \(s\in [\frac{T}{2}-1, \frac{T}{2}]\), using that \(\Psi _1= (Re^{-s})^{\frac{n-2}{2}}e^{-\frac{(n-2)T}{4}}\), we have

$$\begin{aligned}&\Big | (-\Delta _{\gamma _T} + c_n R(\gamma _T))(\chi _{1,T}\Psi _1) \Big | \\&\quad \lesssim e^{-T} \cosh (2s) \Vert \Psi _1\Vert _{C^2(C_T)} + \Big | (-\Delta _{\mathring{\gamma }} + c_n R(\mathring{\gamma }))(\chi _{1,T}\Psi _1) \Big | \lesssim e^{-\frac{(n-2)T}{2}}. \end{aligned}$$

This proves the desired \(C^0\) bound in (4.3) and (4.4). The estimate of the derivatives and the Hölder bound follow from similar reasoning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corvino, J., Eichmair, M. & Miao, P. Deformation of scalar curvature and volume. Math. Ann. 357, 551–584 (2013). https://doi.org/10.1007/s00208-013-0903-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0903-8

Mathematics Subject Classification (1991)

Navigation