Skip to main content
Log in

On the pressure transfer function for solitary water waves with vorticity

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we analyse the role which the pressure function on the sea-bed plays in determining solitary waves with vorticity. We prove that the pressure function on the flat bed determines a unique, real analytic solitary wave solution to the governing equations, given a real analytic vorticity distribution. In particular, the pressure function on the flat bed prescribes a unique surface profile for the resulting solitary water wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amick, C.J., Fraenkel, L.E., Toland, J.F.: On the Stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baquerizo, A., Losada, M.A.: Transfer function between wave height and wave pressure for progressive waves. Coastal Eng. 24, 351–353 (1995)

    Article  Google Scholar 

  4. Bishop, C.T., Donelan, M.A.: Measuring waves with pressure transducers. Coastal Eng. 11, 309–328 (1987)

    Article  Google Scholar 

  5. Constantin, A.: On the recovery of solitary wave profiles from pressure measurements. J. Fluid Mech. 699, 376–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A.: Nonlinear water waves with applications to wave–current interactions and tsunamis. CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

  7. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Escher, J.: Analyticity of periodic travelling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Escher, J., Hsu, H.-C.: Pressure beneath a solitary water wave: mathematical theory and experiments. Arch. Ration. Mech. Anal. 201, 251–269 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Strauss, W.: Pressure and trajectories beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Strauss, W.: Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deconinck, B., Henderson, D., Oliveras, K.L., Vasan, V.: Recovering the water-wave surface from pressure measurements. In: Proceedings of 10th International Conference on WAVES, Vancouver, July 25–29, (2011)

  14. Escher, J., Schlurmann, T.: On the recovery of the free surface from the pressure within periodic traveling water waves. J. Nonlinear Math. Phys. 15, 50–57 (2008)

    Article  MathSciNet  Google Scholar 

  15. Groves, M.D., Wahlén, E.: Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Physica D 237, 1530–1538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henry, D.: Pressure in a deep-water Stokes wave. J. Math. Fluid Mech. 13, 251–257 (2011)

    Article  MathSciNet  Google Scholar 

  17. Henry, D.: On the deep-water Stokes wave flow. Int. Math. Res. Not. Art. ID rnn071 (2008)

  18. Hur, V.M.: Exact solitary water waves with vorticity. Arch. Ration. Mech. Anal. 188, 213–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. John, F.: Partial Differential Equations. Springer, Berlin (1991)

    Google Scholar 

  20. Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Birkhauser, Basel (1992)

    Book  MATH  Google Scholar 

  21. Kuo, Y.-Y., Chiu, J.-F.: Transfer function between the wave height and wave pressure for progressive waves. Coastal Eng. 23, 81–93 (1994)

    Article  Google Scholar 

  22. Lewy, H.: A note on harmonic functions and a hydrodynamical application. Proc. Am. Math. Soc. 3, 111–113 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    MATH  Google Scholar 

  24. Oliveras, K.L., Vasan, V., Deconinck, B., Henderson, D.: Recovering surface elevation from pressure data. SIAM J. Appl. Math (in press)

  25. Thomas, G., Klopman, G.: Wave–current interactions in the nearshore region. In: Gravity Waves in Water of Finite Depth, Advances in Fluid Mechanics, vol. 10, pp. 215–319. WIT, Southampton (1997)

  26. Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Tsai, C.-H., Huang, M.-C., Young, F.-J., Lin, Y.-C., Li, H.-W.: On the recovery of surface wave by pressure transfer function. Ocean Eng. 32, 1247–1259 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous referee for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Henry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, D. On the pressure transfer function for solitary water waves with vorticity. Math. Ann. 357, 23–30 (2013). https://doi.org/10.1007/s00208-013-0899-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0899-0

Mathematics Subject Classification (1991)

Navigation