Skip to main content
Log in

\(p\)-Harmonic functions in the Heisenberg group: boundary behaviour in domains well-approximated by non-characteristic hyperplanes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study, for given \(p,~1<p<\infty \), the boundary behaviour of non-negative \(p\)-harmonic functions in the Heisenberg group \(\mathbb{H }^n\), i.e., we consider weak solutions to the non-linear and potentially degenerate partial differential equation

$$\begin{aligned} \sum _{i=1}^{2n}X_i(|Xu|^{p-2}\,X_i u)=0 \end{aligned}$$

where the vector fields \(X_1,\ldots ,X_{2n}\) form a basis for the space of left-invariant vector fields on \(\mathbb{H }^n\). In particular, we introduce a set of domains \(\Omega \subset \mathbb{H }^n\) which we refer to as domains well-approximated by non-characteristic hyperplanes and in \(\Omega \) we prove, for \(2\le p<\infty \), the boundary Harnack inequality as well as the Hölder continuity for ratios of positive \(p\)-harmonic functions vanishing on a portion of \(\partial \Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aikawa, H., Kilpeläinen, T., Shanmugalingam, N., Zhong, X.: Boundary Harnack principle for \(p\)-harmonic functions in smooth Euclidean domains. Potential Anal. 26, 281–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bony, J.M.: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptique degeneres. Ann. Inst. Fourier. 119, 277–304 (1969)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L., Fabes, E., Mortola, S., Salsa, S.: Boundary behaviour of non-negative solutions of elliptic operators in divergence form. Indiana J. Math. 30, 621–640 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behaviour of solutions of non-linear sub-elliptic equations. Am. J. Math. 118, 1153–1196 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Capogna, L., Garofalo, N.: Boundary behavior of non-negative solutions of sub-elliptic equations in NTA-domains for Carnot–Carathéodory metrics. J. Fourier Anal. Appl. 4, 403–432 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Capogna, L., Garofalo, N., Nhieu, D.M.: Examples of uniform and NTA-domains in Carnot groups. In: Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999), pp. 103–121, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk (2000)

  7. Capogna, L., Kenig, C., Lanzani, L.: Harmonic Measure: Geometric and Analytic Points of View, University Lecture Series 35, American Mathematical Society, Providence (2005)

  8. Chow, W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnug. Math. Ann. 117, 98–105 (1939)

    MathSciNet  Google Scholar 

  9. Cygan, J.: Subadditivity of homogeneous norms on certain nilpotent Lie groups. Proc. Am. Math. Soc. 83, 69–70 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danielli, D.: Regularity at the boundary for solutions of nonlinear sub-elliptic equations. Indiana J. Math. 44, 269–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Danielli, D., Garofalo, N., Petrosyan, A.: The sub-elliptic obstacle problem: \(C^{1,\alpha }\)-regularity of the free boundary in Carnot groups of step two. Adv. Math. 211, 485–516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Domokos, A.: Differentiability of solutions for the non-degenerate \(p\)-Laplacian in the Heisenberg group. J. Differ. Equ. 204, 439–470 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Domokos, A., Manfredi, J.: \(C^{1,\alpha }\)-regularity for \(p\)-harmonic functions in the Heisenberg group for \(p\) near 2. Contemp. Math. 370, 17–23 (2005)

    Article  MathSciNet  Google Scholar 

  14. Fichera, G.: Sulle equazioni alle derivate parziali del secondo ordine ellittico-paraboliche. (Italian) Univ. e Politec. Torino. Rend. Sem. Mat. 15, 27–47 (1955–1956)

  15. Fichera, G.: On a unified theory of boundary value problems for elliptic-parabolic equations of second order. In: Boundary Problems in Differential Equations, pp. 97–120, University of Wisconsin Press, Madison (1960)

  16. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  17. Garofalo, N., Phuc, N.C.: Boundary behaviour of \(p\)-harmonic functions in the Heisenberg group Mathemat. Ann. (2010)

  18. Götmark, E., Nyström, K.: Boundary behaviour of non-negative solutions to degenerate sub-elliptic equations J. Differ. Equ. (accepted)

  19. Hörmander, H.: Hypoelliptic second-order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heinonen, J., Holopainen, I.: Quasiregular maps on Carnot groups. J. Geom. Anal. 7, 109–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerison, D., Kenig, C.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46, 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jerison, D.: The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, Parts I and II. J. Funct. Anal. 43, 97–142 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jerison, D.: Boundary regularity in the Dirichlet problem for \(\partial _b\) on CR manifolds. Commun. Pure Appl. Math. 36, 143–181 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jerison, D.: The Poincare inequality for vector fields satisfying Hörmanders condition. Duke Math. J. 53, 503–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kohn, J.J., Nirenberg, L.: Non-coercive boundary value problems. Commun. Pure Appl. Math. 18, 443–492 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenig, C., Toro, T.: Harmonic measure on locally flat domains. Duke Math. J. 87, 501–551 (1997)

    Article  MathSciNet  Google Scholar 

  27. Kenig, C., Toro, T.: Free boundary regularity for harmonic measure and Poisson kernels. Ann. Math. 150, 369–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kenig, C., Toro, T.: Poisson kernel characterization of Reifenberg flat chord arc domains. Ann. Sci. Ecole Norm. Sup. (4) 36(3), 323–401 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Kenig, C., Toro, T.: Free boundary regularity below the continuous threshold: 2-phase problems. Journal für Reine und Angewendte Mathematik 596, 1–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lewis, J., Lundström, N.L.P., Nyström, K.: Boundary Harnack inequalities for operators of \(p\)-Laplace type in Reifenberg flat domains. In: Perspectives in PDE, Harmonic Analysis, and Applications, Proceedings of Symposia in Pure Mathematics, vol. 79, pp. 229–266 (2008)

  31. Lewis, J., Nyström, K.: Boundary Behaviour for \( p \)-Harmonic Functions in Lipschitz and Starlike Lipschitz Ring Domains. Annales Scientifiques de L’Ecole Normale Superieure 40, 765–813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lewis, J., Nyström, K.: Boundary behaviour and the Martin boundary problem for \(p\)-harmonic functions in Lipschitz domains. Ann. Math. 172, 1907–1948 (2010)

    Article  MATH  Google Scholar 

  33. Lewis, J., Nyström, K.: Regularity and free boundary regularity for the \(p\)-Laplacian in Lipschitz and \(C^1\)-domains. Ann. Acad. Sci. Fenn. Math. 33, 523–548 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Lewis, J., Nyström, K.: Boundary behaviour of \(p\)-harmonic functions in domains beyond Lipschitz domains. Adv. Calc. Var. 1, 133–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Manfredi, J., Mingione, G.: Regularity results for quasi-linear elliptic equations on the Heisenberg group. Math. Ann. 339, 485–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marchi, S.: \(C^{1,\alpha }\) local regularity for solutions of the \(p\)-Laplacian on the Heisenberg group for \(2\le p\le 1+\sqrt{5}\). Anal. Anwendungen 20, 617–636 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Mingione, G., Zatorska-Goldstein, A., Zhong, X.: Gradient regularity for elliptic equations in the Heisenberg group (preprint)

  38. Monti, R., Morbidelli, D.: Non-tangentially accessible domains for vector fields. Indiana Univ. Math. J. 54, 473–498 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Monti, R., Morbidelli, D.: Regular domains in homogeneous groups. Trans. Am. Math. Soc. 357, 2975–3011 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nagel, A., Stein, E., Wainger, S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155, 103–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rashevsky, P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. (Russian) 2, 83–94 (1938)

    Google Scholar 

  42. Zhong, X.: Regularity for variational problems in the Heisenberg group (preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaj Nyström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyström, K. \(p\)-Harmonic functions in the Heisenberg group: boundary behaviour in domains well-approximated by non-characteristic hyperplanes. Math. Ann. 357, 307–353 (2013). https://doi.org/10.1007/s00208-013-0896-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0896-3

Mathematics Subject Classification

Navigation