Skip to main content
Log in

Ekedahl–Oort and Newton strata for Shimura varieties of PEL type

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the Ekedahl–Oort stratification for good reductions of Shimura varieties of PEL type. These generalize the Ekedahl–Oort strata defined and studied by Oort for the moduli space of principally polarized abelian varieties (the “Siegel case”). They are parameterized by certain elements \(w\) in the Weyl group of the reductive group of the Shimura datum. We show that for every such \(w\) the corresponding Ekedahl–Oort stratum is smooth, quasi-affine, and of dimension \(\ell (w)\) (and in particular non-empty). Some of these results have previously been obtained by Moonen, Vasiu, and the second author using different methods. We determine the closure relations of the strata. We give a group-theoretical definition of minimal Ekedahl–Oort strata generalizing Oort’s definition in the Siegel case and study the question whether each Newton stratum contains a minimal Ekedahl–Oort stratum. As an interesting application we determine which Newton strata are non-empty. This criterion proves conjectures by Fargues and by Rapoport generalizing a conjecture by Manin for the Siegel case. We give a necessary criterion when a given Ekedahl–Oort stratum and a given Newton stratum meet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Björner, A., Brenti, F.: Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231. Springer, Berlin (2005)

    Google Scholar 

  2. Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné cristalline II, Lecture Notes in Math, vol. 930. Springer, Berlin (1982)

    Google Scholar 

  3. Borovoi, M.: Abelian Galois cohomology of reductive groups. Mem. AMS 132, 1–50 (1998)

    MathSciNet  Google Scholar 

  4. Bültel, O., Wedhorn, T.: Congruence relations for Shimura varieties associated to some unitary groups. J. Inst. Math. Jussieu 5, 229–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chai, C.-L.: Newton polygons as lattice points. Am. J. Math. 122, 967–990 (2000)

    Article  MATH  Google Scholar 

  6. Chen, M., Kisin, M., Viehmann, E.: Connected components of closed affine Deligne-Lusztig varieties for unramified groups (in preparation)

  7. Deng, B., Du, J., Parshall, B., Wang, J.: Finite dimensional Algebras and Quantum Groups, Mathematical Surveys and Monographs, vol. 150. AMS, Providence (2008)

    Google Scholar 

  8. Deligne, P., Pappas, G.: Singularités des espaces de module de Hilbert, en les charactéristiques divisant le discriminant. Comp. Math. 90, 59–79 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Grothendieck, A., Dieudonné, J.: Eléments de Géométrie Algébrique. I Grundlehren der Mathematik 166 (1971) Springer, II-IV Publ. Math. IHES 8 (1961), 11 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967)

  10. Ekedahl, T., van der Geer, G.: Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties. In: Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, vol. I, pp. 567–636, Progr. Math., 269, Birkhäuser Boston, Inc., Boston (2009)

  11. Faltings, G.: Algebraic loop groups and moduli spaces of bundles. J. Eur. Math. Soc. 5, 41–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fargues, L.: Cohomologie des espaces de modules de groupes \(p\)-divisibles et correspondances de Langlands locales, in Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales. Astérisque 291, 1–199 (2004)

    MathSciNet  Google Scholar 

  13. Gashi, Q.: On a conjecture of Kottwitz and Rapoport. Ann. Sci. École Norm. Sup. 43, 1017–1038 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Görtz, U., Haines, Th. J., Kottwitz, R.E., Reuman, D.C.: Dimensions of affine Deligne Lusztig varieties. Ann. Sci. École Norm. Sup. 39, 467–511 (2006)

    Google Scholar 

  15. Görtz, U., Haines, Th. J., Kottwitz, R.E., Reuman, D.C.: Affine Deligne-Lusztig varieties in affine flag varieties. Compos. Math. 146, 1339–1382 (2010)

    Google Scholar 

  16. Goren, E., Oort, F.: Stratifications of Hilbert modular varieties. J. Algebra Geom. 9, 111–154 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Görtz, U., Wedhorn, T.: Algebraic Geometry I. Vieweg/Teubner, Braunschweig/Stuttgart (2010)

    Book  MATH  Google Scholar 

  18. Harashita, S.: Configuration of the central streams in the moduli of abelian varieties. Asian J. Math. 13, 215–250 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Harashita, S.: Generic Newton polygons of Ekedahl–Oort strata: Oort’s conjecture. Ann. Inst. Fourier 60, 1787–1830 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, X.: The \(G\)-stable pieces of the wonderful compactification. Trans. Am. Math. Soc. 359, 3005–3024 (2007)

    Article  MATH  Google Scholar 

  21. Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001)

    Google Scholar 

  22. Kottwitz, R.E.: Isocrystals with additional structure. Comp. Math. 56, 201–220 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Kottwitz, R.E.: Points on some Shimura varieties over finite fields. J. AMS 5, 373–444 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Kottwitz, R.E., Rapoport, M.: On the existence of \(F\)-crystals. Comment. Math. Helv. 78, 153–184 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Lan, K.-W.: Arithmetic compactification of PEL type Shimura varieties, PhD thesis, Harvard 2008, revised version (2010), London Mathematical Society Monographs (to appear)

  26. Lau, E.: A duality theorem for Dieudonné displays. Ann. Sci. École Norm. Sup. 42, 214–259 (2009)

    Google Scholar 

  27. Lau, E.: A relation between Dieudonné displays and crystalline Dieudonné theory. arXiv:1006.2720v1

  28. Laumon, G., Moret-Bailly, L.: Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebie- te, 3. Folge 39. Springer, Berlin (2000)

  29. Lucarelli, C.: A converse to Mazur’s inequality for split classical groups. J. Inst. Math. Jussieu 3, 165–183 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lusztig, G.: Parabolic character sheaves. II. Mosc. Math. J. 4, 869–896 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Faber, C., van der Geer, G., Oort, F. (eds.): Moduli of Abelian Varieties, Progress in Mathematics, vol. 195. Birkhäuser, Basel (2001)

  32. Moonen, B.: Group schemes with additional structures and Weyl group cosets. In: Faber, C., van der Geer, G., Oort, F. (eds.) Moduli of Abelian Varieties, Progress in Mathematics, vol. 195, pp. 255–298. Birkhäuser, Basel (2001)

  33. Moonen, B.: A dimension formula for Ekedahl-Oort strata. Ann. Inst. Fourier 54, 666–698 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moonen, B.: Serre-Tate theory for moduli spaces of PEL type. Ann. Sci. École Norm. Sup. 37, 223–269 (2004)

    Google Scholar 

  35. Moonen, B., Wedhorn, T.: Discrete invariants of varieties in positive characteristic. IMRN 72, 3855–3903 (2004)

    Article  MathSciNet  Google Scholar 

  36. Nicole, M.-H., Vasiu, A., Wedhorn, T.: Purity of level \(m\) stratifications. Ann. Sci. École Norm. Sup. 43, 927–957 (2010)

    Google Scholar 

  37. Oda, T.: The first de Rham cohomology group and Dieudonné modules. Ann. Sci. École Norm. Sup. 2, 63–135 (1969)

    Google Scholar 

  38. Oort, F.: A stratification of a moduli space of abelian varieties. In: Faber, C., van der Geer, G., Oort, F. (eds.) Moduli of Abelian Varieties, Progress in Mathematics, vol. 185, pp. 435–416. Birkhäuser, Basel (2001)

  39. Oort, F.: Newton polygon strata in the moduli space of abelian varieties. In: Faber, C., van der Geer, G., Oort, F. (eds.) Moduli of Abelian Varieties, Progress in Mathematics, vol. 195, pp. 417–440. Birkhäuser, Basel (2001)

  40. Oort, F.: Foliations in moduli spaces of abelian varieties. J.A.M.S. 17, 267–296 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Oort, F.: Minimal \(p\)-divisible groups. Ann. Math. 161, 1021–1036 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oort, F.: Simple \(p\)-kernels of \(p\)-divisible groups. Adv. Math. 198, 275–310 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Platonov, V., Rapinchuk, A.: Algebraic Groups and Number Theory, English translation. Academic Press, London (1994)

    Google Scholar 

  44. Pink, R., Wedhorn, T., Ziegler, P.: Algebraic zip data. Doc. Math. 16, 253–300 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Rapoport, M.: A guide to the reduction modulo \(p\) of Shimura varieties. Astérisque 298, 271–318 (2005)

    MathSciNet  Google Scholar 

  46. Rapoport, M., Richartz, M.: On the classification and specialization of \(F\)-isocrystals with additional structure. Compos. Math. 103, 153–181 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Rapoport, M., Zink, T.: Period spaces for \(p\)-divisible groups, Annals of Math. Studies, vol. 141. Princeton University Press, Princeton (1996)

    Google Scholar 

  48. Demazure, M., et al.: Schémas en groupes, I, II, III, LNM 151, 152, 153. Springer, Berlin (1970)

    Google Scholar 

  49. Serre, J.-P.: Galois Cohomology, Springer Monographs in Mathematics, Springer, Berlin (2002)

  50. Tits, J.: Reductive groups over local fields. In: Automorphic Forms, Representations and \(L\)-Functions (Proc. Sympos. Pure Math. XXXIII), pp 29–69, Am. Math. Soc., Providence, RI (1979)

  51. Vasiu, A.: Crystalline boundedness principle. Ann. Sci. École Norm. Sup. 39, 245–300 (2006)

    Google Scholar 

  52. Vasiu, A.: Level \(m\) stratifications of versal deformations of \(p\)-divisible groups. J. Algebraic Geom. 17, 599–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vasiu, A.: Mod \(p\) classification of Shimura \(F\)-crystals. Math. Nachr. 283, 1068–1113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vasiu, A.: Manin problems for Shimura varieties of Hodge type. J. Ramanujan Math. Soc. 26, 31–84 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Viehmann, E.: Truncations of level 1 of elements in the loop group of a reductive group. preprint, http://arxiv.org/abs/0907.2331

  56. Vollaard, I., Wedhorn, T.: The supersingular locus of the Shimura variety of \({\rm GU} (1, n-1)\) II. Invent. Math. 184, 591–627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wedhorn, T.: Ordinariness in good reductions of Shimura varieties of PEL-type. Ann. Sci. École Norm. Sup. 32, 575–618 (1999)

    Google Scholar 

  58. Wedhorn, T.: The dimension of Oort strata of Shimura varieties of PEL-type. In: Faber, C., van der Geer, G., Oort, F. (eds.) Moduli of Abelian Varieties, Progress in Mathematics, vol. 195, pp. 411–471. Birkhäuser, Basel (2001)

  59. Wedhorn, T.: Flatness of the mod p period morphism for the moduli space of principally polarized abelian varieties, unpublished note. arXiv:math/0507177 (2005)

  60. Wedhorn, T.: Specialization of \(F\)-zips, unpublished note. arXiv:math/0507175 (2005)

  61. Yatsyshyn, Y.: Purity of \(G\)-zips. arXiv:1210.8396 (preprint)

  62. Yu, C.-F.: Leaves on Shimura varieties. Proc. ICCM II, 630–661 (2007)

    Google Scholar 

  63. Zink, T.: A Dieudonné Theory for \(p\)-divisible groups. In: Class Field Theory, Its Centenary and Prospect, pp. 1–22. Advanced Studies in Pure Mathematics, Tokyo (2000)

Download references

Acknowledgments

We thank E. Lau for providing a proof of Lemma 4.1 which is much simpler than our original one. Further we thank F. Oort for helpful discussions and D. Wortmann and the referee for helpful remarks. The first author was partially supported by the SFB/TR45 “Periods, Moduli Spaces and Arithmetic of Algebraic Varieties” and a Heisenberg fellowship of the DFG and by ERC Starting Grant 277889 “Moduli spaces of local \(G\)-shtukas”. The second author was partially supported by the SPP1388 “Representation Theory”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Wedhorn.

A. Appendix on Coxeter groups, reductive group schemes and quotient stacks

A. Appendix on Coxeter groups, reductive group schemes and quotient stacks

In this appendix we fix some conventions and recall results on Coxeter groups, on reductive group schemes and on quotient stacks that are used in the main text.

1.1 A.1 Coset representatives of Coxeter groups

Let \(W\) be a Coxeter group and \(I\) its generating set of simple reflections. Let \(\ell \) denote the length function on \(W\).

Let \(J\) be a subset of \(I\). We denote by \(W_J\) the subgroup of \(W\) generated by \(J\) and by \(W^J\) (respectively \({}^{J}{W}\)) the set of elements \(w\) of \(W\) which have minimal length in their coset \(wW_J\) (respectively \(W_Jw\)). Then every \(w \in W\) can be written uniquely as \(w=w^{J}w_{J}= w^{\prime }_J {}^{J}{w}\) with \(w_J, w^{\prime }_J \in W_J\), \(w^J\in W^J\) and \({}^{J}{w} \in {}^{J}{W}\), and \(\ell (w) = \ell (w_J) + \ell (w^J) = \ell (w^{\prime }_J) + \ell ({}^{J}{w})\) (see [7, Proposition 4.16]). In particular, \(W^J\) and \({}^{J}{W}\) are systems of representatives for \(W/W_J\) and \(W_J\backslash W\) respectively.

Furthermore, if \(K\) is a second subset of \(I\), let \({}^{J}{W}^{K}\) be the set of \(w \in W\) which have minimal length in the double coset \(W_JwW_K\). Then \({}^{J}{W}^{K}={}^{J}{W}\cap W^K\) and \({}^{J}{W}^{K}\) is a system of representatives for \(W_J\backslash W/W_K\) (see [7, (4.3.2)]).

1.2 A.2 Bruhat order

We let \(\le \) denote the Bruhat order on \(W\). This natural partial order is characterized by the following property: For \(x, w\in W\) we have \(x\le w\) if and only if for some (or, equivalently, any) reduced expression \(w=s_{i_{1}}\cdots s_{i_{n}}\) as a product of simple reflections \(s_i\in I\), one gets a reduced expression for \(x\) by removing certain \(s_{i_{j}}\) from this product. More information about the Bruhat order can be found in [1, Chapter 2]. The set \({}^{J}{W}\) can be described as

$$\begin{aligned} {}^{J}{W}=\{\,w \in W\ ;\ w < sw \text{ for} \text{ all} s \in J\,\} \end{aligned}$$
(12.1)

(see [1, Definition 2.4.2 and Corollary 2.4.5]).

1.3 A.3 Reductive group schemes, maximal tori, and Borel subgroups

Let \(S\) be a scheme. A reductive group scheme over \(S\) is a smooth affine group scheme \(G\) over \(S\) such that for every geometric point \(s \in S\) the geometric fiber \(G_{\bar{s}}\) is a connected reductive algebraic group over \(\kappa (\bar{s})\).

Let \(G\) be a reductive group scheme over \(S\). A maximal torus of \(G\) is a closed subtorus \(T\) of \(G\) such that \(T_{\bar{s}}\) is a maximal element in the set of subtori of \(G_{\bar{s}}\) for all \(s \in S\). By a theorem of Grothendieck [48, Exp. XIV, 3.20] maximal tori of \(G\) exist Zariski locally on \(S\). A Borel subgroup of \(G\) is a closed smooth subgroup scheme \(B\) of \(G\) such that for all \(s \in S\) the geometric fiber \(B_{\bar{s}}\) is a Borel subgroup of \(G_{\bar{s}}\) in the usual sense (i.e., a maximal smooth connected solvable subgroup). A reductive group scheme over \(S\) is called split if there exists a maximal torus \(T\) of \(G\) such that \(T \cong \mathbb G _{m,S}^r\) for some integer \(r \ge 0\).

1.4 A.4 Parabolic subgroups and Levi subgroups

A smooth closed subgroup scheme \(P\) of \(G\) is called parabolic subgroup of \(G\) if the fppf quotient \(G/P\) is representable by a smooth projective scheme or, equivalently by [48, Exp. XXII (5.8.5)], if \(G_{\bar{s}}/P_{\bar{s}}\) is proper for all \(s \in S\). Every Borel subgroup of \(G\) is a parabolic subgroup. The unipotent radical of \(P\), denoted by \(U_P\), is the largest smooth normal closed subgroup scheme with unipotent and connected fibers. It exists by [48, Exp. XXII, (5.11.4)]. If \(P\) contains a maximal torus \(T\) of \(G\), there exists a unique reductive closed subgroup scheme \(L\) of \(P\) containing \(T\) such that the canonical homomorphism \(L \rightarrow P/U_P\) is an isomorphism (loc. cit.). Any such subgroup \(L\) is called a Levi subgroup of \(P\).

The functor that sends an \(S\)-scheme \(T\) to the set of Borel (resp. parabolic) subgroups of \(G \times _S T\) is representable by a smooth projective \(S\)-scheme by [48, Exp. XXVI, 3]. We call the representing scheme \(\mathrm{Bor}_G\) (resp. \(\mathrm{Par}_G\)). The functor that attaches to an \(S\)-scheme \(T\) the set of pairs \((P,L)\), where \(P\) is a parabolic subgroup of \(G \times _S T\) and \(L\) is a Levi subgroup of \(P\) is representable by a smooth quasi-projective \(S\)-scheme (loc. cit.).

If \(S\) is local, \(G\) is called quasi-split if there exists a Borel subgroup of \(G\). Every split reductive group scheme is quasi-split. If \(S = {\mathrm{Spec}} R\), where \(R\) is a henselian local ring whose residue field \(k\) has cohomological dimension \(\le 1\) (e.g., if \(k\) is finite), then \(G\) is quasi-split. Indeed, the special fiber \(G_k\) has a Borel subgroup \(B_k\) by [49, III, Sect. 2.3]. As the scheme of Borel subgroups \(\mathrm{Bor}_G\) is smooth, there exists a lifting of \(B_k\) to a Borel subgroup of \(G\).

1.5 A.5 Weyl groups and types of parabolic subgroups over connected base schemes

Let \(G\) be a reductive group over an algebraically closed field, let \(B\) be a Borel subgroup of \(G\), and let \(T\) be a maximal torus of \(B\). Let \(W(T) := \mathrm{Norm}_G(T)/T\) denote the associated Weyl group, and let \(I(B,T) \subset W(T)\) denote the set of simple reflections defined by \(B\). Then \(W(T)\) is a Coxeter group with respect to the subset \(I(B,T)\).

A priori this data depends on the pair \((B,T)\). However, any other such pair \((B^{\prime },T^{\prime })\) is obtained by conjugating \((B,T)\) by some element \(g\in G\) which is unique up to right multiplication by \(T\). Thus conjugation by \(g\) induces isomorphisms \(W(T) \stackrel{\sim }{\rightarrow } W(T^{\prime })\) and \(I(B,T) \stackrel{\sim }{\rightarrow } I(B^{\prime },T^{\prime })\) that are independent of \(g\). Moreover, the isomorphisms associated to any three such pairs are compatible with each other. Thus \(W := W_G := W(T)\) and \(I := I(B,T)\) for any choice of \((B,T)\) can be viewed as instances of “the” Weyl group and “the” set of simple reflections of \(G\), in the sense that up to unique isomorphisms they depend only on \(G\).

Now let \(G\) be a quasi-split reductive group scheme over a connected scheme \(S\). Then we obtain for any geometric point \(\bar{s}\rightarrow S\) the Weyl group and the set of simple reflections \((W_{\bar{s}},I_{\bar{s}})\) of \(G_{\bar{s}}\). The algebraic fundamental group \(\pi _1(S,\bar{s})\) acts naturally on \(W_{\bar{s}}\) preserving \(I_{\bar{s}}\) (because \(G\) is quasi-split), and every étale path \(\gamma \) from \(\bar{s}\) to another geometric point \(\bar{s}^{\prime }\) of \(S\) yields an isomorphism of \((W_{\bar{s}},I_{\bar{s}}) \overset{\sim }{\rightarrow }(W_{\bar{s}^{\prime }},I_{\bar{s}^{\prime }})\) that is equivariant with respect to the isomorphism \(\pi _1(S,\bar{s}) \overset{\sim }{\rightarrow }\pi _1(S,\bar{s}^{\prime })\) induced by \(\gamma \) (cf. [48] Exp. XII, 2.1). In particular \((W_{\bar{s}},I_{\bar{s}})\) together with its action by \(\pi _1(S,\bar{s})\) is independent of the choice of \(\bar{s}\) up to isomorphism. We denote it by \((W,I)\) and call it the Weyl system of \(G\).

If \(P\) is a parabolic subgroup of \(G\) and \(s \in S\), the type \(J_{\bar{s}} \subset I\) of the parabolic subgroup \(P_{\bar{s}}\) of \(G_{\bar{s}}\) is independent of \(s \in S\) [48, Exp. XXVI, 3] and we call \(J := J_{\bar{s}}\) the type of \(P\). For a subset \(J\) of \(I\) we denote by \(\mathrm{Par}_J\) the open and closed subscheme of \(\mathrm{Par}\) parameterizing parabolic subgroups of type \(J\). If \(S\) is a semi-local scheme, \(J\) and \(\mathrm{Par}_J\) are defined over a finite étale covering of \(S\) [48, Exp. XXIV, 4.4.1].

For simplicity assume that \(S\) is local. Let \(J, K \subseteq I\) be subsets and let \(S_1 \rightarrow S\) be the finite étale extension over which \(J\) and \(K\) are defined. Let \(w \in {}^{J}{W}^{K}\). For every \(S_1\)-scheme \(S^{\prime }\) and for every parabolic subgroup \(P\) of \(G_{S^{\prime }}\) of type \(J\) and every parabolic subgroup \(Q\) of \(G_{S^{\prime }}\) of type \(K\) we write

$$\begin{aligned} \mathrm{relpos}(P,Q) = w \end{aligned}$$

if there exists an fppf-covering on \(S^{\prime \prime } \rightarrow S^{\prime }\), a Borel subgroup \(B\) of \(G_{S^{\prime \prime }}\) and a split maximal torus \(T\) of \(B\) such that \(P_{S^{\prime \prime }}\) contains \(B\) and \(Q_{S^{\prime \prime }}\) contains \({}^{\dot{w}}{B}\), where \(\dot{w} \in \mathrm{Norm}_{G_{S^{\prime \prime }}}(T)(S^{\prime \prime })\) is a representative of \(w \in W = \mathrm{Norm}_{G_{S^{\prime \prime }}}(T)(S^{\prime \prime })/T(S^{\prime \prime })\).

If \(S^{\prime } = {\mathrm{Spec}} k\) for an algebraically closed field, then \((P,Q) \mapsto \mathrm{relpos}(P,Q)\) yields a bijection between \(G(k)\)-orbits on \(\mathrm{Par}_J(k) \times \mathrm{Par}_K(k)\) and the set \({}^{J}{W}^{K}\).

1.6 A.6 One-parameter subgroups and their type

Let \(G\) be a reductive group scheme over a connected scheme \(S\). A one-parameter subgroup of \(G\) is by definition a homomorphism of group schemes \(\lambda :\mathbb G _{m,S} \rightarrow G\), where \(\mathbb G _{m,S}\) denotes the multiplicative group over \(S\). We identify the character group of \(\mathbb G _{m,S}\) with \(\mathbb Z \). Composing \(\lambda \) with the adjoint representation \(G \rightarrow \mathrm{GL}(\mathrm{Lie}(G))\) yields a decomposition \(\mathrm{Lie}(G) = \bigoplus _{n \in \mathbb Z } \mathfrak{g }_n\). There is a unique parabolic subgroup \(P(\lambda )\) of \(G\) and a unique Levi subgroup \(L(\lambda )\) of \(P(\lambda )\) such that

$$\begin{aligned} \mathrm{Lie}P(\lambda ) = \bigoplus _{n \ge 0}\mathfrak{g }_n, \quad \mathrm{Lie}L(\lambda ) = \mathfrak{g }_0. \end{aligned}$$

Indeed, because of the uniqueness assertion we may show this locally for the étale topology and hence can assume that the image of \(\lambda \) lies in a split maximal torus. Then the claim follows from [48] Exp. XXVI, 1.4 and 4.3.2. By loc. cit. we may define \(L(\lambda )\) also as the centralizer of \(\lambda \).

The type of \(P(\lambda )\) is also called the type of \(\lambda \). It depends only on the conjugacy class of \(\lambda \).

1.7 A.7 The example of the symplectic group

As an example consider a symplectic space \((V,{\langle \ ,\ \rangle })\) of dimension \(2g\) over a field \(k\) and denote by \(G = \mathrm{GSp}(V,{\langle \ ,\ \rangle })\) the group of symplectic similitudes of \((V,{\langle \ ,\ \rangle })\). Let \(S_{2g}\) denote the symmetric group of the set \(\{1,\cdots ,2g\}\). Then the Weyl system \((W,I)\) of \(G\) is given by

$$\begin{aligned} \begin{aligned} W&= \{\,w \in S_{2g}\ ;\ w(i) + w(2g+1-i) = 2g+1 \,\text{ for} \text{ all} i = 1,\dots ,g\,\},\\ I&= \{s_1,\dots ,s_g\},\quad \text{ where}\quad s_i = \left\{ \begin{array}{l} \tau _i\tau _{2g-i},\\ \tau _g, \end{array} \begin{array}{l} \text{ for} i = 1,\dots ,g-1;\\ \text{ for} i = g. \end{array} \right. \end{aligned} \end{aligned}$$
(12.2)

Here \(\tau _j\) denotes the transposition of \(j\) and \(j+1\). The length of an element \(w \in W\) can be computed as follows

$$\begin{aligned} \ell (w)&= \#\{\,(i,j)\!\ ;\ 1 \le i < j \le g, w(i) > w(j)\,\} \\&+ \#\{\,(i,j)\!\ ;\ 1 \le i \le j \le g, w(i) + w(j) > 2g+1\,\}. \end{aligned}$$

For every \(d\)-tuple \((x_1,\dots ,x_d)\) of real numbers we denote by \((x_1,\dots ,x_d){\uparrow }\) the \(d\)-tuple \((x_{\sigma (1)},\dots ,x_{\sigma (d)})\) with \(\sigma \in S_d\) such that \(x_{\sigma (1)} \le \dots \le x_{\sigma (d)}\). Then the Bruhat order is given by

$$\begin{aligned} w^{\prime } \le w \iff \forall \ 1\le i \le g: (w^{\prime }(1),\dots ,w^{\prime }(i)){\uparrow } \le (w(1),\dots ,w(i)){\uparrow }, \end{aligned}$$

where we compare tuples componentwisely.

To study the Siegel case we consider the subset \(J := \{s_1,\dots ,s_{g-1}\}\) of \(I\). Then \(W_J\) consists of those permutations \(w \in W\) such that \(w(\{1,\dots ,g\}) = \{1,\dots ,g\}\). The map

$$\begin{aligned} W_J \rightarrow S_g, \quad w \mapsto w{}_{\vert }{}_{\{1,\dots ,g\}} \end{aligned}$$

is a group isomorphism. The set \({}^{J}{W}\) consists in this case of those elements \(w \in W\) such that \(w^{-1}(1) < w^{-1}(2) < \dots < w^{-1}(g)\). Of course, this implies \(w^{-1}(g+1) < \dots < w^{-1}(2g)\).

It is convenient to give an alternative description of \({}^{J}{W}\). To \(w \in {}^{J}{W}\) we attach \(\epsilon = (\epsilon _i)_{1 \le i \le g} \in \{0,1\}^g\) by

$$\begin{aligned}\epsilon _i := \left\{ \! \begin{array}{ll} 0,&\quad \text{ if}\, i \in \{w^{-1}(1),\dots ,w^{-1}(g)\};\\ 1,&\quad \text{ otherwise}, \end{array} \right. \quad i = 1,\dots ,g. \end{aligned}$$

This yields a bijection \({}^{J}{W} \leftrightarrow \{0,1\}^g\). The length of such an element \(\epsilon = (\epsilon _1,\dots ,\epsilon _g)\) is equal to

$$\begin{aligned} \ell (\epsilon ) = \sum _{i=1}^g i\epsilon _{g+1-i}. \end{aligned}$$
(12.3)

The set \({}^{J}{W}^{J} \cong W_J \backslash W/W_J\) corresponds to the set of \(W_J\)-orbits of \(\{0,1\}^g\), where \(W_J = S_g\) acts by permuting the entries of \((\epsilon _i)_i \in \{0,1\}^g\). Thus \((\epsilon _i)_i \mapsto \#\{\,i\ ;\ \epsilon _i = 1\,\}\) yields a bijection

$$\begin{aligned} {}^{J}{W}^{J} \leftrightarrow \{0,\dots ,g\}. \end{aligned}$$
(12.4)

The set \({}^{J}{W}\) can also be described by elementary sequences in the sense of Oort (see [10, Sect. 2]; note that in loc. cit. the set \(W^J\) is considered which we identify with \({}^{J}{W}\) via \(w \mapsto w^{-1}\)): For \(w \in {}^{J}{W}\) we define

$$\begin{aligned}\varphi _w:\{0,\dots ,g\} \rightarrow \mathbb Z _{\ge 0}, \quad i \mapsto i - \#\{\,1 \le a \le g\ ;\ w^{-1}(a) \le i\,\}. \end{aligned}$$

Then \(\varphi _w\) is an elementary sequence, i.e., a map \(\varphi :\{0,\dots ,g\} \rightarrow \mathbb Z _{\ge 0}\) such that \(\varphi (0) = 0\) and such that \(\varphi (i-1) \le \varphi (i) \le \varphi (i-1) + 1\) for all \(i = 1,\dots ,g\). The map \(w \mapsto \varphi _w\) yields a bijection between \({}^{J}{W}\) and the set \(\mathcal{S }_g\) of elementary sequences. The tuple \((\epsilon _i)_i \in \{0,1\}^g\) corresponding to an element \(w \in {}^{J}{W}\) can be described via the elementary sequence \(\varphi _w\) by \(\epsilon _i = \varphi _w(i) - \varphi _w(i-1)\). Using (12.3) an easy calculation shows

$$\begin{aligned} \ell (w) = \sum _{i=1}^g \varphi _w(i). \end{aligned}$$
(12.5)

Finally, for \(w,w^{\prime } \in {}^{J}{W}\) we have \(w^{\prime } \le w\) if and only if \(\varphi _{w^{\prime }}(i) \le \varphi _w(i)\) for all \(i = 1,\dots ,g\).

Let us now describe parabolic subgroups of \(G\) of type \(J\). Let \(S\) be any \(k\)-scheme. Then \(V_S = V \otimes _k {\fancyscript{O}}_S\) is a free \({\fancyscript{O}}_S\)-module of rank \(2g\), and the base change of \({\langle \ ,\ \rangle }\) is a perfect alternating form on \(V_S\). An \({\fancyscript{O}}_S\)-submodule \({\fancyscript{L}}\) of \(V_S\) is called Lagrangian if \({\fancyscript{L}}\) is locally on \(S\) a direct summand of \(V_S\) of rank \(g\) and if \({\fancyscript{L}}\) is totally isotropic. Attaching to a Lagrangian \({\fancyscript{L}}\) its stabilizer in \(G_S\) yields a bijection between the set of Lagrangians in \(V_S\) and the set of parabolic subgroups \(P\) of \(G \times _k S\) of type \(J\) (with \(J = \{s_1,\dots ,s_{g-1}\}\)).

Let \({\fancyscript{L}}\) and \({\fancyscript{L}}^{\prime }\) be Lagrangians in \(V_S\) and let \(P\) and \(P^{\prime }\) be the corresponding parabolic subgroups of \(G_S\) of type \(J\). Then for \(d \in \{0,\dots ,g\} = {}^{J}{W}^{J}\) (12.4) we have

$$\begin{aligned} \mathrm{relpos}(P,P^{\prime }) = d \iff V_S/({\fancyscript{L}}+ {\fancyscript{L}}^{\prime }) \text{ is} \text{ locally} \text{ free} \text{ of} \text{ rank} g-d. \end{aligned}$$
(12.6)

Here the condition that \(V_S/({\fancyscript{L}}+ {\fancyscript{L}}^{\prime })\) is locally free (of some rank) is equivalent to the condition that fppf-locally \(P\) and \(Q\) contain a common maximal torus [35, Sect. 3.5].

1.8 A.8 The underlying topological space of a quotient stack

We recall some—probably well known—facts on quotient stacks. For lack of a better reference we refer to [58, (4.2)–(4.4)]. Let \(k\) be a field, \(\bar{k}\) an algebraic closure, \(\Gamma := \mathrm{Aut}(\bar{k}/k)\) the profinite group of \(k\)-automorphisms of \(\bar{k}\). Let \(X\) be a \(k\)-scheme of finite type and let \(H\) be a smooth affine group scheme over \(k\) that acts on \(X\). We assume that there are only finitely many \(H(\bar{k})\)-orbits in \(X(\bar{k})\).

Let \([H \backslash X]\) be the algebraic quotient stack. To describe its underlying topological space we first recall that if \(\le \) is a partial order on a set \(Z\), we can define a topology on \(Z\) by defining a subset \(U\) of \(Z\) to be open if for all \(u \in U\) and \(z \in Z\) with \(u \le z\) one has \(z \in U\).

Let \(\Xi ^\mathrm{alg}\) be the set of \(H(\bar{k})\)-orbits in \(X(\bar{k})\). For \(\mathcal{O }, \mathcal{O }^{\prime } \in \Xi ^\mathrm{alg}\) we set \(\mathcal{O }^{\prime } \le \mathcal{O }\) if the closure of \(\mathcal{O }\) contains \(\mathcal{O }^{\prime }\). This defines a partial order and hence a topology on \(\Xi ^\mathrm{alg}\). The group \(\Gamma \) acts on \(\Xi ^\mathrm{alg}\) and we denote the set of \(\Gamma \)-orbits on \(\Xi ^\mathrm{alg}\) by \(\Xi \). We endow \(\Xi \) with the quotient topology. Then \(\Xi \) is homeomorphic to the underlying topological space of \([H \backslash X]\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viehmann, E., Wedhorn, T. Ekedahl–Oort and Newton strata for Shimura varieties of PEL type. Math. Ann. 356, 1493–1550 (2013). https://doi.org/10.1007/s00208-012-0892-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0892-z

Navigation