Skip to main content
Log in

Singular gradient flow of the distance function and homotopy equivalence

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(M\) be a Riemannian manifold and let \(\varOmega \) be a bounded open subset of \(M\). It is well known that significant information about the geometry of \(\varOmega \) is encoded into the properties of the distance, \(d_{\partial \varOmega }\), from the boundary of \(\varOmega \). Here, we show that the generalized gradient flow associated with the distance preserves singularities, that is, if \(x_0\) is a singular point of \(d_{\partial \varOmega }\) then the generalized characteristic starting at \(x_0\) stays singular for all times. As an application, we deduce that the singular set of \(d_{\partial \varOmega }\) has the same homotopy type as \(\varOmega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albano, P., Cannarsa, P.: Structural properties of singularities of semiconcave functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 719–740 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Albano, P., Cannarsa, P.: Propagation of singularities for solutions of nonlinear first order partial differential equations Arch. Ration. Mech. Anal. 162, 1–23 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alberti, G., Ambrosio, L., Cannarsa, P.: On the singularities of convex functions. Manuscripta Math. 76, 421–435 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes—a state-of-the-art report. In: Farin, G., Hege, H.-C., Hoffman, D., Johnson, C.R., Polthier, K. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pp. 109–125. Springer, Berlin (2009)

    Chapter  Google Scholar 

  5. Berger, M.: A Panoramic View of Riemannian Geometry. Springer-Verlag, Berlin (2003)

    Book  MATH  Google Scholar 

  6. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  7. Cannarsa, P., Yu, Y.: Singular dynamics for semiconcave functions. J. Eur. Math. Soc. (JEMS) 11, 999–1024 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dafermos, C.: Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana Univ. Math. J. 26, 1097–1119 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  11. Grove, K., Shiohama, K.: A generalized sphere theorem. Ann. Math. 106, 201–211 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kruzhkov, S.N.: Generalized solutions of the Hamilton–Jacobi equations of the eikonal type I. Math. USSR Sb. 27, 406–445 (1975)

    Article  Google Scholar 

  13. Krylov, N.V.: Nonlinear elliptic and parabolic equations of the second order. Translated from the Russian by P. L. Buzytsky. Mathematics and its Applications (Soviet Series), vol. 7. D. Reidel Publishing Co, Dordrecht (1987)

  14. Lieutier, A.: Any open bounded subset of \({\mathbb{R}}^n\) has the same homotopy type as its medial axis. Comput. Aided Des. 36, 1029–1046 (2004)

    Article  Google Scholar 

  15. Perelman, G.: Spaces with curvature bounded below. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 517–525. Birkhäuser, Basel (1995)

  16. Petersen, P.: Riemannian Geometry. Springer, New York (2006)

    MATH  Google Scholar 

  17. Petrunin, A.: Semiconcave functions in Alexandrov’s geometry. In: Surveys in Differential Geometry, vol. XI. Surv. Differ. Geom., vol. 11, pp. 137–201. Int. Press, Somerville, MA (2007)

  18. Villani, C.: Optimal Transport, Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  19. Yu, Y.: A simple proof of the propagation of singularities for solutions of Hamilton–Jacobi equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(5), 439–444 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cannarsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albano, P., Cannarsa, P., Nguyen, K.T. et al. Singular gradient flow of the distance function and homotopy equivalence. Math. Ann. 356, 23–43 (2013). https://doi.org/10.1007/s00208-012-0835-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0835-8

Mathematics Subject Classification (2000)

Navigation