Skip to main content
Log in

Nonlinear parabolic capacity and polar sets of superparabolic functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We extend the theory of the thermal capacity for the heat equation to nonlinear parabolic equations of the \(p\)-Laplacian type. We study definitions and properties of the nonlinear parabolic capacity and show that the capacity of a compact set can be represented via a capacitary potential. As an application, we show that polar sets of superparabolic functions are of zero capacity. The main technical tools used include estimates for equations with measure data and obstacle problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G.: Removable singularities for linear parabolic equations. Arch. Ration. Mech. Anal. 17, 79–84 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccardo, L., Dall’Aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147(1), 237–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bögelein, V., Duzaar, F., Mingione, G.: Degenerate problems with irregular obstacles. J. Reine Angew. Math. 650, 107–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. DiBenedetto, E.: Degenerate parabolic equations. Universitext. Springer, New York (1993)

    Book  MATH  Google Scholar 

  7. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack estimates for quasi-linear degenerate parabolic differential equations. Acta Math. 200(2), 181–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’s inequality for degenerate and singular parabolic equations. Springer Monographs in Mathematics. Springer, New York (2012)

    Book  Google Scholar 

  9. Doob, J.L.: Classical potential theory and its probabilistic couterpart. Springer, Berlin (1984)

    Book  Google Scholar 

  10. Droniou, J., Porretta, A., Prignet, A.: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19, 99–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edmunds, D.E., Peletier, L.A.: Removable singularities of solutions of quasilinear parabolic equations. J. Lond. Math. Soc. 2(2), 273–283 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, L.C., Gariepy, R.F.: Wiener’s test for the heat equation. Arch. Ration. Mech. Anal. 78, 293–314 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gariepy, R., Ziemer, W.P.: Removable sets for quasilinear parabolic equations. J. Lond. Math. Soc. 21(2), 311–318 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gariepy, R., Ziemer, W.P.: Thermal capacity and boundary regularity. J. Differ. Equ. 45, 374–388 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harvey, R., Polking, J.: A notion of capacity which characterizes removable singularities. Trans. Am. Math. Soc. 1669, 183–195 (1972)

    Article  MathSciNet  Google Scholar 

  16. Heinonen, J., Kilpeläinen, T.: Polar sets for supersolutions of degenerate elliptic equations. Math. Scand. 63, 136–150 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonliear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)

    Google Scholar 

  18. Kilpeläinen, T., Lindqvist, P.: On the Dirichlet boundary value problem for a degenerate parabolic equation. SIAM J. Math. Anal. 27(3), 661–683 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kilpeläinen, T., Malý, J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19(4), 591–613 (1992)

    MathSciNet  MATH  Google Scholar 

  20. Kinnunen, J., Lindqvist, P.: Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. (4) 185(3), 411–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kinnunen, J., Lindqvist, P.: Summability of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(1), 59–78 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Kinnunen, J., Lukkari, T., Parviainen, M.: An existence result for superparabolic functions. J. Funct. Anal. 258, 713–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korte, R., Kuusi, T., Parviainen, M.: A connection between a general class of superparabolic functions and supersolutions. J. Evol. Equ. 10(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Korte, R., Kuusi, T., Siljander, J.: Obstacle problem for nonlinear parabolic equations. J. Differ. Equ. 246(9), 3668–3680 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuusi, T.: Lower semicontinuity of weak supersolutions to nonlinear parabolic equations. Differ. Integr. Equ. 22(11–12), 1211–1222 (2009)

    Google Scholar 

  26. Kuusi, R., Parviainen, M.: Existence for a degenerate Cauchy problem. Manuscr. Math. 128(2), 213–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lanconelli, E.: Sul problema di Dirichlet per l’equazione del calore. Ann. Mat. Pura Appl. 97, 83–114 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lanconelli, E.: Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui. Ann. Mat. Pura Appl. 106, 11–38 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Landis, E.M.: Necessary and sufficient conditions for the regularity of a boundary point for the Dirichlet problem for the heat equation. Sov. Math. Dokl. 10, 380–384 (1969)

    MATH  Google Scholar 

  30. Lindqvist, P., Manfredi, J.J.: Viscosity supersolutions of the evolutionary \(p\)-Laplace equation. Differ. Integr. Equ. 20(11), 1303–1319 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Lindqvist, P., Martio, O.: Regularity and polar sets of supersolutions of certain degenerate elliptic equations. J. Anal. Math. 50, 1–17 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lindqvist, P., Parviainen, M.: Irregular time dependent obstacles. Submitted

  33. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunord et Gauthier-Villars, Paris (1969)

    Google Scholar 

  34. Pierre, M.: Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14(3), 522–533 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saraiva, L.M.: Removable singularities and quasilinear parabolic equations. Proc. Lond. Math. Soc. 48, 385–400 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saraiva, L.M.: Removable singularities of solutions of quasilinear parabolic equations. Ann. Mat. Pura Appl. (IV) CXLI, 187–221

  37. Taylor, S.J., Watson, N.A.: A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Camb. Phil. Soc. 97, 325–344 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Trundinger, N.S., Wang, X.-J.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124(2), 369–410 (2002)

    Article  Google Scholar 

  39. Watson, N.A.: A theory of subtemperatures in several variables. Proc. Lond. Math. Soc. 26, 385–417 (1973)

    Article  MATH  Google Scholar 

  40. Watson, N.A.: Green functions, potential, and the Dirichlet problem for the heat equation. Proc. London Math. Soc. 33, 251–298; Corrigendum, ibid., 37, 32–34 (1978)

  41. Watson, N.A.: Thermal capacity. Proc. Lond. Math. Soc. 37, 342–362 (1978)

    Article  MATH  Google Scholar 

  42. Ziemer, W.P.: Behavior at the boundary of solutions of quasilinear parabolic equations. J. Differ. Equ. 35, 291–305 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Diffusion Equations. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Kinnunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinnunen, J., Korte, R., Kuusi, T. et al. Nonlinear parabolic capacity and polar sets of superparabolic functions. Math. Ann. 355, 1349–1381 (2013). https://doi.org/10.1007/s00208-012-0825-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0825-x

Mathematics Subject Classification (1991)

Navigation