Skip to main content
Log in

Eichler–Shimura theory for mock modular forms

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We use mock modular forms to compute generating functions for the critical values of modular \(L\)-functions, and we answer a generalized form of a question of Kohnen and Zagier by deriving the “extra relation” that is satisfied by even periods of weakly holomorphic cusp forms. To obtain these results we derive an Eichler–Shimura theory for weakly holomorphic modular forms and mock modular forms. This includes two “Eichler–Shimura isomorphisms”, a “multiplicity two” Hecke theory, a correspondence between mock modular periods and classical periods, and a “Haberland-type” formula which expresses Petersson’s inner product and a related antisymmetric inner product on \(M_{k}^{!}\) in terms of periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that this definition implies that weakly holomorphic modular forms are mock modular forms. Several papers require mock modular forms to correspond to those harmonic Maass forms for which \({\mathcal F }^{-}\ne 0.\)

  2. Throughout we omit the dependence on the level in the case of \(SL_2({\mathbb Z }).\)

References

  1. Borcherds, R.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borcherds, R.: The Gross–Kohnen–Zagier theorem in higher dimensions. Duke Math. J. 97, 219–233 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bringmann, K., Ono, K.: Lifting cusp forms to Maass forms with an application to partitions. Proc. Natl. Acad. Sci. USA 104(10), 3725–3731 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bringmann, K., Ono, K.: Coefficients of harmonic weak Maass forms. In: Alladi, K., Garvan, F. (eds.) Partitions, \(q\)-series, and modular forms, pp. 23–38. Springer, Berlin (2011)

  5. Bruinier, J., Funke, J.: On two geometric theta lifts. Duke Math. J. 125(1), 45–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruinier, J., Ono, K.: Heegner divisors, \(L\)-functions and Maass forms. Ann. Math. 172, 2135–2181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruinier, J., Ono, K., Rhoades, R.: Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues. Math. Ann. 342(3), 673–693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eichler, M.: Eine verallgemeinerung der abelschen integrale. Math. Z. 67, 267–298 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gross, B., Zagier, D.: Heegner points and derivatives of \(L\)-series. Invent. Math. 84, 225–320 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guerzhoy, P.: Hecke operators for weakly holomorphic modular forms and supersingular congruences. Proc. Am. Math. Soc. 136, 3051–3059 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haberland, K.: Perioden von modulformen einer variabler and Gruppencohomologie. I, II, III, Math. Nachr. 112, 245–282, 283–295, 297–315 (1983)

  12. Iwaniec, H.: Topics in Classical Automorphic Forms. Amer. Math. Soc., Providence, RI (1997)

  13. Kent, Z.: Periods of Eisenstein series and some applications. Proc. Am. Math. Soc. 139, 3789–3794 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knopp, M.: Some new results on the Eichler cohomology of automorphic forms. Bull. Am. Math. Soc. 80, 607–632 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knopp, M.: Rademacher on \(J(\tau ),\) Poincaré series of nonpositive weights and the Eichler cohomology. Not. Am. Math. Soc. 37, 385–393 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271, 237–268 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kohnen, W., Zagier, D.: Values of \(L\)-series of modular forms at the center of the critical strip. Invent. Math. 64(2), 175–198 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohnen, W., Zagier, D.: Modular forms with rational periods. Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., pp. 197–249. Horwood, Chichester (1984)

  19. Lewis, J., Zagier, D.: Period functions for Maass wave forms. I. Ann. Math. (2) 153(1), 191–258 (2001)

    Google Scholar 

  20. Manin, Y.: Periods of parabolic forms and \(p\)-adic Hecke series. Math. USSR Sbornik 21(3), 371–393 (1973)

    Article  Google Scholar 

  21. Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. In: Proc. of the 2008 Harvard-MIT Current Developments in Mathematics, pp. 347–454. International Press, Somerville, MA (2009)

  22. Ono, K.: The last words of a genius. Not. Am. Math. Soc. 57, 1410–1419 (2010)

    MATH  Google Scholar 

  23. Popa, A.: Rational decomposition of modular forms. Ramanujan J. (in press)

  24. Razar, M.J.: Values of Dirichlet series at integers in the critical strip, Modular functions of one variable, VI. In: Proc. Second Int. Conf., Univ. Bonn, Bonn, 1976, vol. 627, pp. 1–10. Springer, Berlin (1977)

  25. Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Jpn. 11(4), 291–311 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97(2), 440–481 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31(3), 79–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Waldspurger, J.: Sur les coefficients de Fourier des forms modulaires de poids demi-entier. J. Math. Pure Appl. (9) 60(4), 375–484 (1981)

    Google Scholar 

  29. Zagier, D.: The Rankin–Selberg method for automorphic forms which are not of rapid decay. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 415–437 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zagier, D.: Ramanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono], Sém. Bourbaki, 60éme année, 2006–2007, no. 986

  32. Zwegers, S.: Mock \(\vartheta \)-functions and real analytic modular forms, \(q\)-series with applications to combinatorics, number theory, and physics. In: Berndt, B.C., Ono, K. (eds.) Contemp. Math., vol. 291, pp. 269–277. Amer. Math. Soc. (2001)

  33. Zwegers, S.: Mock theta functions, Ph.D. thesis, U. Utrecht (2002)

Download references

Acknowledgments

The authors thank the American Institute for Mathematics for their hospitality during the “Mock modular forms” conference in March 2010. The authors also thank Jan Bruinier, Michael Dewar, Marvin Knopp, Winfried Kohnen, Wissam Raji, and Don Zagier for insightful comments. The second author is grateful for the support of the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Ono.

Additional information

The authors thank the NSF for their support. The research of the first author was supported by the Alfried Krupp Prize for Young University Teachers of the Krupp Foundation. The fourth author thanks the support of the Candler Fund at Emory University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bringmann, K., Guerzhoy, P., Kent, Z. et al. Eichler–Shimura theory for mock modular forms. Math. Ann. 355, 1085–1121 (2013). https://doi.org/10.1007/s00208-012-0816-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0816-y

Mathematics Subject Classification

Navigation