Skip to main content
Log in

On the average indices of closed geodesics on positively curved Finsler spheres

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we prove that on every Finsler n-sphere (S n, F) for n ≥  6 with reversibility λ and flag curvature K satisfying \({(\frac{\lambda}{\lambda+1})^2 \, < \, K \, \le \, 1}\) , either there exist infinitely many prime closed geodesics or there exist \({[\frac{n}{2}]-2}\) closed geodesics possessing irrational average indices. If in addition the metric is bumpy, then there exist n−3 closed geodesics possessing irrational average indices provided the number of prime closed geodesics is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangert V.: On the existence of closed geodesics on two-spheres. Int. J. Math 4(1), 1–10 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bangert V., Long Y.: The existence of two closed geodesics on every Finsler 2-sphere. Math. Ann. 346(2), 335–366 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballmann W., Thorbergsson G., Ziller W.: Closed geodesics on positively curved manifolds. Ann. Math. 116, 213–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballmann W., Thorbergsson G., Ziller W.: Existence of closed geodesics on positively curved manifolds. J. Differ. Geod. 18, 221–252 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Borel A.: Seminar on Transformation Groups. Princeton University Press, Princeton (1960)

    MATH  Google Scholar 

  6. Bott R.: On the iteration of closed geodesics and the Sturm intersection theory. Commun. Pure Appl. Math. 9, 171–206 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  8. Conley C., Zehnder E.: Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math. 37, 207–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duan H., Long Y.: Multiple closed geodesics on bumpy Finsler n-spheres. J. Differ. Equ. 233(1), 221–240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duan H., Long Y.: The index growth and multiplicity of closed geodesics. J. Funct. Anal. 259(7), 1850–1913 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duan, H., Long, Y.: The index quasi-periodicity and multiplicity of closed geodesics. arXiv:1008.1458

  12. Fet, A.I.: A periodic problem in the calculus of variations. Dokl. Akad. Nauk. SSSR (N.S.) 160, 287–289 (1965), Soviet Math. 6, 85–88 (1965)

  13. Fadell E., Rabinowitz P.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Inv. Math. 45(2), 139–174 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franks J.: Geodesics on S 2 and periodic points of annulus homeomorphisms. Invent. Math. 108(2), 403–418 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gromoll D., Meyer W.: On differentiable functions with isolated critical points. Topology 8, 361–369 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gromoll D., Meyer W.: Periodic geodesics on compact Riemannian manifolds. J. Differ. Geod. 3, 493–510 (1969)

    MathSciNet  MATH  Google Scholar 

  17. Hingston N.: Equivariant Morse theory and closed geodesics. J. Differ. Geom. 19, 85–116 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Katok, A.B.: Ergodic properties of degenerate integrable Hamiltonian systems. Izv. Akad. Nauk SSSR. 37 (1973) (Russian), Math. USSR-Izv. 7, 535–571 (1973)

    Google Scholar 

  19. Klingenberg W.: Closed geodesics. Ann. Math. 89, 68–91 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klingenberg W.: Lectures on Closed Geodesics. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  21. Liu C.: The relation of the Morse index of closed geodesics with the Maslov-type index of symplectic paths. Acta Math. Sinica. English Series 21, 237–248 (2005)

    Article  Google Scholar 

  22. Liu C., Long Y.: Iterated index formulae for closed geodesics with applications. Sci. China 45, 9–28 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Long Y.: Maslov-type index, degenerate critical points and asymptotically linear Hamiltonian systems. Sci. China Series A. 33, 1409–1419 (1990)

    MATH  Google Scholar 

  24. Long Y.: Bott formula of the Maslov-type index theory. Pacific J. Math. 187, 113–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Long Y.: Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics. Adv. Math. 154, 76–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Long, Y.: Index Theory for Symplectic Paths with Applications. Progress in Mathematics, vol. 207. Birkhäuser, Basel (2002)

  27. Long Y., Duan H.: Multiple closed geodesics on 3-spheres. Adv. Math. 221(6), 1757–1803 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Long Y., Wang W.: Stability of closed geodesics on Finsler 2-spheres. J. Funct. Anal. 255, 620–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Long Y., Zhu C.: Closed characteristics on compact convex hypersurfaces in \({\mathbf{R}^{2n}}\) . Ann. Math. 155, 317–368 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Long, Y., Zehnder, E.: Morse theory for forced oscillations of asymptotically linear Hamiltonian systems. In: Albeverio, S. et al. (eds.) Stochastic Process, Physics and Geometry, pp. 528–563. World Scientific, Singapore (1990)

  31. Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

    MATH  Google Scholar 

  32. Mercuri F.: The critical point theory for the closed geodesic problem. Math. Z. 156, 231–245 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rademacher, H.-B.: Morse Theorie und geschlossene Geodatische. Bonner Math. Schriften Nr. 229 (1992)

  34. Rademacher H.-B.: The Fadell–Rabinowitc index and closed geodesics. J. Lond. Math. Soc. 50, 609–624 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rademacher H.-B.: A sphere theorem for non-reversible Finsler metrics. Math. Annalen. 328, 373–387 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rademacher H.-B.: Existence of closed geodesics on positively curved Finsler manifolds. Ergodic Theory Dyn. Syst. 27(3), 957–969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen Z.: Lectures on Finsler Geometry. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  38. Spanier E.H.: Algebraic Topology. McGraw-Hill Book Comp, New York (1966)

    MATH  Google Scholar 

  39. Viterbo C.: A new obstruction to embedding Lagrangian tori. Inv. Math. 100, 301–320 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang W.: Closed geodesics on positively curved Finsler spheres. Adv. Math. 218, 1566–1603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wilking B.: Index parity of closed geodesics and rigidity of Hopf fibritions. Inv. Math. 144, 281–295 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ziller W.: Geometry of the Katok examples. Ergod. Th. Dyn. Sys. 3, 135–157 (1982)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

W. Wang was partially supported by National Natural Science Foundation of China No. 10801002, China Postdoctoral Science Foundation No. 200801021, Foundation for the Author of National Excellent Doctoral Dissertation of PR China No. 201017.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W. On the average indices of closed geodesics on positively curved Finsler spheres. Math. Ann. 355, 1049–1065 (2013). https://doi.org/10.1007/s00208-012-0812-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0812-2

Mathematics Subject Classification

Navigation