Skip to main content
Log in

Some combinatorial identities related to commuting varieties and Hilbert schemes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this article we explore some of the combinatorial consequences of recent results relating the isospectral commuting variety and the Hilbert scheme of points in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calaque, D., Enriquez, B., Etingof, P.: Universal KZB equations: the elliptic case. In: Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, Vol. I. Progress in Mathematics, vol. 269, pp. 165–266. Birkhäuser Boston Inc., Boston (2009)

  2. Chriss N., Ginzburg V.: Representation Theory And Complex Geometry. Birkhäuser Boston Inc, Boston (1997)

    MATH  Google Scholar 

  3. Etingof P., Ginzburg V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147(2), 243–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Garsia A.M., Haiman M.: A random q, t-hook walk and a sum of Pieri coefficients. J. Combin. Theory Ser. A 82(1), 74–111 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garsia, A.M., Haiman, M., Tesler, G.: Explicit plethystic formulas for Macdonald q, t-Kostka coefficients. Sém. Lothar. Combin. 42, 45 (electronic) (1999) (Art. B42m) [The Andrews Festschrift (Maratea, 1998)]

  6. Ginzburg V.: Principal nilpotent pairs in a semisimple Lie algebra. I. Invent. Math. 140(3), 511–561 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ginzburg, V.: Isospectral commuting variety, the Harish-Chandra D-module, and principal nilpotent pairs. arXiv: 1108.5367v2 (2011)

  8. Ginzburg V., Guay N., Opdam E., Rouquier R.: On the category \({\mathcal{O}}\) for rational Cherednik algebras. Invent. Math. 154(3), 617–651 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gordon, I.: Macdonald Positivity via the Harish-Chandra D-module. http://www.maths.ed.ac.uk/~igordon/pubs/. preprint (2010)

  10. Haiman M.: Conjectures on the quotient ring by diagonal invariants. J. Algebraic Combin. 3(1), 17–76 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haiman M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haiman M.: Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149(2), 371–407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haiman, M.: Combinatorics, symmetric functions, and Hilbert schemes. In: Current Developments in Mathematics, 2002, pp. 39–111. International Press, Somerville (2003)

  14. Hesselink W.H.: Characters of the nullcone. Math. Ann. 252(3), 179–182 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hotta R., Kashiwara M.: The invariant holonomic system on a semisimple Lie algebra. Invent. Math. 75(2), 327–358 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications, vol. 16. Addison-Wesley Publishing Co., Reading (1981) (with a foreword by P. M. Cohn, with an introduction by Gilbert de B. Robinson)

  17. Kashiwara M.: D-modules and microlocal calculus. In: Translations of Mathematical Monographs, vol. 217. American Mathematical Society, Providence, RI (2003) (translated from the 2000 Japanese original by Mutsumi Saito, Iwanami Series in Modern Mathematics)

  18. Kashiwara, M.: Equivariant derived category and representation of real semisimple Lie groups. In: Representation Theory and Complex Analysis. Lecture Notes in Mathematics, vol. 1931, pp. 137–234. Springer, Berlin (2008)

  19. Kraft H.: Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics. D1. Friedr. Vieweg und Sohn, Braunschweig (1984)

    Book  Google Scholar 

  20. Leclerc, B., Thibon, J.-Y.: Canonical bases of q-deformed Fock spaces. Intern. Math. Res. Notices 1996(9), 447–456 (1996)

    Google Scholar 

  21. Leclerc, B., Thibon, J.-Y.: Littlewood–Richardson coefficients and Kazhdan–Lusztig polynomials. In: Combinatorial Methods in Representation Theory (Kyoto, 1998). Advanced Studies in Pure Mathematics, vol. 28, pp. 155–220. Kinokuniya, Tokyo (2000)

  22. Richardson R.W.: Commuting varieties of semisimple Lie algebras and algebraic groups. Compos. Math. 38(3), 311–327 (1979)

    MATH  Google Scholar 

  23. Rouquier, R.: q-Schur algebras and complex reflection groups. Mosc. Math. J. 8(1), 119–158, 184 (2008)

    Google Scholar 

  24. Stembridge J.R.: On the eigenvalues of representations of reflection groups and wreath products. Pac. J. Math. 140(2), 353–396 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stembridge, J.R.: Graded multiplicities in the Macdonald kernel. I. IMRP Int. Math. Res. Pap. 2005(4), 183–236 (2005)

  26. Varagnolo M., Vasserot E.: On the decomposition matrices of the quantized Schur algebra. Duke Math. J. 100(2), 267–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwyn Bellamy.

Additional information

The research of the first author was supported through the programme “Oberwolfach Leibinz Fellows” by the Mathematisches Forshungsinstitut Oberwolfach in 2010. The research of the second author was supported in part by the NSF award DMS-1001677.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellamy, G., Ginzburg, V. Some combinatorial identities related to commuting varieties and Hilbert schemes. Math. Ann. 355, 801–847 (2013). https://doi.org/10.1007/s00208-012-0805-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0805-1

Mathematics Subject Classication

Navigation