Skip to main content
Log in

Complete gradient shrinking Ricci solitons with pinched curvature

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that any n-dimensional complete gradient shrinking Ricci soliton with pinched Weyl curvature is a finite quotient of \({\mathbb{R}^{n}, \mathbb{R}\times \mathbb{S}^{n-1}}\) or \({\mathbb{S}^{n}}\) . In particular, we do not need to assume the metric to be locally conformally flat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao H.-D.: Geometry of Ricci solitons. Chinese Ann. Math. Ser. B 27(2), 121–142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao H.-D.: Recent progress on Ricci solitons. Adv. Lect. Math. (ALM) 11, 1–38 (2010)

    Google Scholar 

  3. Cao, H.-D., Chen, B.-L., Zhu, X.-P.: Recent developments on Hamilton’s Ricci flow. Surveys in Differential Geometry. Geometric Flows, vol. 12, pp. 47–112. International Press, Somerville (2008)

  4. Cao H.-D., Zhou D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85(2), 175–186 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Chen B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82, 363–382 (2009)

    MATH  Google Scholar 

  6. Eminenti M., La Nave G., Mantegazza C.: Ricci solitons: the equation point of view. Manuscr. Math. 127(3), 345–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gallot S., Hulin D., Lafontaine J.: Riemannian Geometry. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  8. Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Hamilton, R.S.: The formation of singularities in the Ricci flow. Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), pp. 7–136. International Press, Cambridge (1995)

  10. Huisken G.: Ricci deformation of the metric on a Riemannian manifold. J. Differ. Geom. 21, 47–62 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Ivey T.: Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3(4), 301–307 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Naber A.: Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Ni, L., Wallach, N.: On 4-dimensional gradient shrinking solitons. Int. Math. Res. Notices (4) (2008)

  14. Ni L., Wallach N.: On a classification of gradient shrinking solitons. Math. Res. Lett. 15(5), 941–955 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. ArXiv Preprint Server—http://www.arxiv.org (2002)

  16. Petersen P., Wylie W.: On the classification of gradient Ricci solitons. Geom. Topol. 14, 2277–2300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. (2010). doi:10.1007/s00209-010-0695-4

  18. Tachibana S.: A theorem of Riemannian manifolds of positive curvature operator. Proc. Japan Acad. 50, 301–302 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pacific J. Math. 242(1), 189–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Catino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catino, G. Complete gradient shrinking Ricci solitons with pinched curvature. Math. Ann. 355, 629–635 (2013). https://doi.org/10.1007/s00208-012-0800-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0800-6

Keywords

Navigation