Skip to main content
Log in

Inverse boundary spectral problem for Riemannian polyhedra

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider a Riemannian polyhedron of a special type with a piecewise smooth boundary. The associated Neumann Laplacian defines the boundary spectral data as the set of eigenvalues and restrictions to the boundary of the corresponding eigenfunctions. In this paper we prove that the boundary spectral data prescribed on an open subset of the polyhedron boundary determine this polyhedron uniquely, i.e. up to an isometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini G., Morassi A., Rosset E.: Detecting cavities by electrostatic boundary measurements. Inverse Probl. 18, 1333–1353 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Astala K., Päivärinta L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163(2), 265–299 (2006)

    Article  MATH  Google Scholar 

  3. Astala K., Lassas M., Päivärinta L.: Calderón’s inverse problem for anisotropic conductivity in the plane. Commun. PDE 30, 207–224 (2005)

    Article  MATH  Google Scholar 

  4. Anderson M., Katsuda A., Kurylev Y., Lassas M., Taylor M.: Boundary regularity for the Riccati equation, geometry convergence and Gelfand’s inverse boundary problem. Invent. Math. 158, 261–321 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babich V., Ulin V.: The complex space-time ray method and “quasiphotons”. Zap. Nauchn. Sem. LOMI 117, 5–12 (1981) (Russian)

    MathSciNet  MATH  Google Scholar 

  6. Ballman W.: A volume estimate for piecewise smooth metrics on simplicial complexes. Rend. Sem. Mat. Fis. Milano 66, 323–331 (1996)

    Article  MathSciNet  Google Scholar 

  7. Belishev, M.: An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR 297, 524–527 (1987) (Russian); transl. Soviet Math. Dokl. 36, 481–484 (1988)

    Google Scholar 

  8. Belishev M.: Wave basis in multidimensional inverse problems. Mat. Sb. 180, 584–602 (1989) (Russian)

    Google Scholar 

  9. Belishev M., Kurylev Ya.: To the construction of a Riemannian manifold via its spectral data (BC-method). Commun. PDE 17, 591–594 (1992)

    Article  MathSciNet  Google Scholar 

  10. DosSantos Ferreira D., Kenig C.E., Salo M., Uhlmann G.: Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 178, 119–171 (2009)

    Article  MathSciNet  Google Scholar 

  11. Eells J., Fuglede B.: Harmonic Maps Between Riemannian Polyhedra. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  12. Greenleaf A., Uhlmann G.: Recovering singularities of a potential from singularities of scattering data. Commun. Math. Phys. 157, 549–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ikehata M.: Reconstruction of inclusion from boundary measurements. J. Inverse Ill-Posed Probl. 10, 37–65 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Ikehata M., Siltanen S.: Electrical impedance tomography and Mittag-Leffler’s function. Inverse Probl. 20, 1325–1348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Imanuvilov O., Isakov V., Yamamoto M.: An inverse problem for the dynamical Lamé system with two sets of boundary data. Commun. Pure Appl. Math. 56, 1366–1382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Isakov V.: On uniqueness of recovery of a discontinuous conductivity coefficient. Commun. Pure Appl. Math. 41, 865–877 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Isakov V.: Inverse Problems for Partial Differential Equations. Springer, New York (2006)

    MATH  Google Scholar 

  18. Isozaki H.: Inverse scattering theory for Dirac operators. Ann. Inst. H. Poincare Phys. Theor. 66, 237–270 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Kachalov A.: Gaussian beams, Hamilton-Jacobi equations and Finsler geometry. Zap. Nauchn. Semin. POMI 297, 66–92 (2003) (Russian)

    Google Scholar 

  20. Kachalov A., Kurylev Y.: Multidimensional inverse problem with incomplete boundary spectral data. Commun. PDE 23, 55–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kachalov A., Kurylev Ya., Lassas M.: Inverse Boundary Spectral Problems, vol. 123. Chapman Hall/CRC, London (2001)

    Book  Google Scholar 

  22. Katchalov, A., Kurylev, Ya., Lassas, M.: Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds. In: Croke, C., Lasiecka, I., Uhlmann, G., Vogelius, M. (eds.) Geometric Methods in Inverse Problems and PDE Control, IMA Volumes in Mathematics and its Applications, pp. 183–214 (2004)

  23. Kervaire M.: A manifold which does not admit any differentiable structure. Commun. Math. Helv. 34, 257–270 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kirpichnikova A.: Propagation of a Gaussian beam near an interface in an anisotropic medium. Zap. Nauchn. Sem. POMI 324(34), 77–109 (2005) (Russian)

    MATH  Google Scholar 

  25. Kirsch A., Päivärinta L.: On recovering obstacles inside inhomogeneities. Math. Methods Appl. Sci. 21, 619–651 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Klibanov M., Yamamoto M.: Lipschitz stability of an inverse problem for an acoustic equation. Appl. Anal. 85, 515–538 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koenig C., Sjoestrand J., Uhlmann G.: The Calderón problem with partial data. Ann. Math. (2) 165(2), 567–591 (2007)

    Article  Google Scholar 

  28. Kurylev Y., Lassas M., Somersalo E.: Maxwell’s equations with a polarization independent wave velocity: direct and inverse problems. J. Math. Pures Appl. 86, 237–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurylev Y., Lassas M.: Inverse problems and index formulae for Dirac operators. Adv. Math. 221, 170–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kurylev, Y.: Admissible groups of transformations that preserve the boundary spectral data in multidimensional inverse problems. Dokl. Akad. Nauk 327, 322–325 (1992) (Russian); transl. in Sov. Phys. Dokl. 37, 544–545 (1992)

  31. Kurylev Y.: An inverse boundary problem for the Schrödinger operator with magnetic field. J. Math. Phys. 36, 2761–2776 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lassas M., Taylor M., Uhlmann G.: The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Commun. Anal. Geom. 11, 207–222 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Lee J., Uhlmann G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42, 1097–1112 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nachman A.: Reconstructions from boundary measurements. Ann. Math. 128(2), 531–576 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nachman A.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143(2), 71–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nakamura, G., Uhlmann, G.: Global uniqueness for an inverse boundary value problem arising in elasticity. Invent. Math. 118, 457–474 (1994), 152, 205–207 (2003)

    Google Scholar 

  37. Nakamura G., Tsuchida T.: Uniqueness for an inverse boundary value problem for Dirac operators. Commun. PDE 25, 1327–1369 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Novikov R.: A multidimensional inverse spectral problem for the equation: Δψ + (v(x)−Eu(x))ψ = 0. Funkt. Anal. i ego Priloz. 22, 11–22 (1988) (Russian)

    Google Scholar 

  39. Ola P., Päivärinta L., Somersalo E.: An inverse boundary value problem in electrodynamics. Duke Math. J. 70, 617–653 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Päivärinta L., Serov V.: Recovery of jumps and singularities in the multidimensional Schrodinger operator from limited data. Inverse Probl. Imaging 1, 525–535 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pestov L., Uhlmann G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math. 161, 1093–1110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Popov M.: Ray Theory and Gaussian Beam Method for Geophysicists. Edufba, Salvador (2002)

    Google Scholar 

  43. Ralston J.: Gaussian beams and propagation of singularities. Studies in PDE, MAA Studies in Mathematics, vol. 23, pp. 206–248. Walter Littman, Washington (1983)

    Google Scholar 

  44. Sylvester J.: An anisotropic inverse boundary value problem. Commun. Pure Appl. Math. 43, 201–232 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sylvester J., Uhlmann G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tataru D.: Unique continuation for solutions to PDE: between Hormander’s theorem and Holmgren’s theorem. Commun. PDE 20, 855–884 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Taylor M.: Tools for PDE. AMS, Providence (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav Kurylev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirpichnikova, A., Kurylev, Y. Inverse boundary spectral problem for Riemannian polyhedra. Math. Ann. 354, 1003–1028 (2012). https://doi.org/10.1007/s00208-011-0758-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0758-9

Keywords

Navigation