Skip to main content
Log in

Subcomplexes in curved BGG-sequences

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

BGG-sequences offer a uniform construction for invariant differential operators for a large class of geometric structures called parabolic geometries. For locally flat geometries, the resulting sequences are complexes, but in general the compositions of the operators in such a sequence are nonzero. In this paper, we show that under appropriate torsion freeness and/or semi-flatness assumptions certain parts of all BGG sequences are complexes. Several examples of structures, including quaternionic structures, hypersurface type CR structures and quaternionic contact structures are discussed in detail. In the case of quaternionic structures we show that several families of complexes obtained in this way are elliptic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akivis M., Goldberg V.: Conformal Differential Geometry and Its Generalizations. Wiley Interscience, New York (1996)

    Book  MATH  Google Scholar 

  2. Bailey T.N., Eastwood M.G.: Complex paraconformal manifolds—their differential geometry and twistor theory. Forum Math. 3(1), 61–103 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baston R.J.: Quaternionic complexes. J. Geom. Phys. 8(1–4), 29–52 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baston R.J., Eastwood M.G.: “The Penrose Transform” Its Interaction with Representation Theory. Oxford Science Publications, Clarendon Press, UK (1989)

    MATH  Google Scholar 

  5. Bernstein I.N., Gelfand I.M., Gelfand S.I.: Differential operators on the base affine space and a study of \({\mathfrak g}\) -modules. In: Gelfand, I.M. (eds) Lie Groups and their Representations, pp. 21–64. Adam Hilger, London (1975)

    Google Scholar 

  6. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque 265 (2000)

  7. Biquard, O.: Quaternionic contact structures. In: Quaternionic Structures in Mathematics and Physics (electronic, Rome, 1999). Univ. Studi Roma “La Sapienza”, pp. 23–30 (1999)

  8. Calderbank D.M.J.: Applications of curved Bernstein–Gelfand–Gelfand sequences. In: Bourguignon, J.P., Branson, T., Hijazi, O. (eds) Global Analysis and Harmonic Analysis, vol. 4, pp. 115–127. Seminaires et Congres, Paris (2000)

    Google Scholar 

  9. Calderbank D.M.J., Diemer T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine Angew. Math. 537, 67–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Čap A.: Infinitesimal automorphisms and deformations of parabolic geometries. J. Eur. Math. Soc. 10(2), 415–437 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Čap A.: Correspondence spaces and twistor spaces for parabolic geometries. J. Reine Angew. Math. 582, 143–172 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Čap A., Gover A.R.: Tractor calculi for parabolic geometries. Trans. Am. Math. Soc. 354(4), 1511–1548 (2002)

    Article  MATH  Google Scholar 

  13. Čap A., Schichl H.: Parabolic geometries and canonical cartan connections. Hokkaido Math. J. 29(3), 453–505 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Čap A., Slovák J.: Weyl structures for parabolic geometries. Math. Scand. 93(1), 53–90 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Čap A., Slovák J., Souček V.: Bernstein–Gelfand–Gelfand sequences. Ann. Math. 154(1), 97–113 (2001)

    Article  MATH  Google Scholar 

  16. Eastwood M.G.: Variations on the de Rham complex. Notices Am. Math. Soc. 46(11), 1368–1376 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Eastwood M.G.: A complex from linear elasticity, The Proceedings of the 19th Winter School “Geometry and Physics”. Rend. Circ. Mat. Palermo Suppl., ser. II 63, 23–29 (2000)

    MathSciNet  Google Scholar 

  18. Kostant B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. Math. 74(2), 329–387 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krump, L., Souček, V.: Hasse diagrams for parabolic geometries. The Proceedings of the 22th Winter School “Geometry and Physics” (Srní 2002), Rend. Circ. Mat. Palermo Suppl., ser. II, vol. 71, pp. 133–141 (2003)

  20. Lepowsky J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49, 496–511 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morimoto T.: Geometric structures on filtered manifolds. Hokkaido Math. J. 22, 263–347 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Onishchik A.: Lectures on real semisimple Lie algebras and their representations, ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2004)

    Book  Google Scholar 

  23. Salamon S.M.: Differential geometry of quaternionic manifolds. Ann. Sci. Ec. Norm. Sup. 19(1), 31–55 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Šilhan J.: A real analog of Kostant’s version of the Bott–Borel–Weil theorem. J. Lie Theory 14(2), 481–499 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Slovák, J.: Parabolic geometries, Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, p. 70. http://www.maths.adelaide.edu.au

  26. Takeuchi M.: Lagrangean contact structures on projective cotangent bundles. Osaka J. Math. 31, 837–860 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Tanaka N.: On the equivalence problem associated with simple graded Lie algebras. Hokkaido Math. J. 8, 23–84 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Yamaguchi K.: Differential systems associated with simple graded Lie algebras. Adv. Stud. Pure Math. 22, 413–494 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Čap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čap, A., Souček, V. Subcomplexes in curved BGG-sequences. Math. Ann. 354, 111–136 (2012). https://doi.org/10.1007/s00208-011-0726-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0726-4

Mathematics Subject Classification (2000)

Navigation