Skip to main content

Advertisement

Log in

Leray’s inequality in general multi-connected domains in \({\mathbb{R}^n}\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Consider the stationary Navier–Stokes equations in a bounded domain \({\Omega \subset \mathbb{R}^n}\) whose boundary \({\partial\Omega}\) consists of L + 1 smooth (n − 1)-dimensional closed hypersurfaces Γ0, Γ1, . . . , Γ L , where Γ1, . . . , Γ L lie inside of Γ0 and outside of one another. The Leray inequality of the given boundary data β on \({\partial\Omega}\) plays an important role for the existence of solutions. It is known that if the flux \({\gamma_i \equiv \int_{\Gamma_i}\beta \cdot \nu dS = 0}\) on Γ i (ν: the unit outer normal to Γ i ) is zero for each i = 0, 1, . . . , L, then the Leray inequality holds. We prove that if there exists a sphere S in Ω separating \({\partial\Omega}\) in such a way that Γ1, . . . , Γ k (1 ≦ k ≦ L) are contained inside of S and that the others Γ k+1, . . . , Γ L are outside of S, then the Leray inequality necessarily implies that γ 1 + · · · +  γ k =  0. In particular, suppose that there are L spheres S 1, . . . , S L in Ω lying outside of one another such that Γ i lies inside of S i for all i = 1, . . . , L. Then the Leray inequality holds if and only if γ 0 = γ 1 = · · · = γ L = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick C.J.: Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33, 817–830 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borchers W., Sohr H.: On the equations rot vg and div u = f with zero boundary conditions. Hokkaido Math. J. 19, 67–87 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Fujita H.: On the existence and regularity of the steady-state solutions of the Navier–Stokes equations. J. Fac. Sci. Univ. Tokyo Sec.I. A. 9, 59–102 (1960)

    Google Scholar 

  4. Fujita, H.: On stationary solutions to Navier–Stokes equation in symmetric plane domains under general outflow condition. In: Navier–Stokes equations: theory and numerical methods, Varenna 1997 Pitman Res. Notes Math. Ser., vol. 388, pp. 16–30. Longman, Harlow, 1998.

  5. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. vol. II. Springer-Verlag, New York (1994)

    Book  MATH  Google Scholar 

  6. Kobayashi., T.: Takeshita’s examples for Leray’s inequality (Preprint)

  7. Kozono H., Yanagisawa T.: L r-variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58, 1853–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kozono H., Yanagisawa T.: Leray’s problem on the stationary Navier–Stokes equations with inhomogeneous boundary data. Math. Z. 262, 27–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ladyzhenskaya O.A.: The mathematical theory of viscous incompressible flow. Gordon and Breach, London (1969)

    MATH  Google Scholar 

  10. Leray J.: Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  11. Morimoto, H.: General outflow condition for Navier–Stokes flow. In: Kozono, H., Shibata, Y. (ed.) Recent topics in mathematical theory of viscous incompressible fluids, Tsukuba 1996. Lect. Notes Num. Appl., vol. 16, pp. 209–224. Kinokuniya, Tokyo (1998)

  12. Takeshita A.: A remark on Leray’s inequality. Pacific J. Math. 157, 151–158 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Temam R.: Navier–Stokes equations. Theory and Numerical Analysis. North-Holland Pub. Co., Amsterdam (1979)

    MATH  Google Scholar 

  14. Ziemer W.P.: Weakly differentiable functions. Springer-Verlag, New York (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kozono.

Additional information

Dedicated to Professor Izumi Takagi on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farwig, R., Kozono, H. & Yanagisawa, T. Leray’s inequality in general multi-connected domains in \({\mathbb{R}^n}\) . Math. Ann. 354, 137–145 (2012). https://doi.org/10.1007/s00208-011-0716-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0716-6

Keywords

Navigation