Skip to main content
Log in

The Duffin–Schaeffer Conjecture with extra divergence

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given a nonnegative function \({\psi\mathbb{N} \to \mathbb{R}}\), let W(ψ) denote the set of real numbers x such that |nxa| < ψ(n) for infinitely many reduced rationals a/n (n > 0). A consequence of our main result is that W(ψ) is of full Lebesgue measure if there exists an \({\epsilon > 0}\) such that

$$ \textstyle \sum_{n\in\mathbb{N}}\left(\frac{\psi(n)}{n}\right)^{1+\epsilon}\varphi (n)=\infty. $$

The Duffin–Schaeffer Conjecture is the corresponding statement with \({\epsilon = 0}\) and represents a fundamental unsolved problem in metric number theory. Another consequence is that W(ψ) is of full Hausdorff dimension if the above sum with \({\epsilon = 0}\) diverges; i.e. the dimension analogue of the Duffin–Schaeffer Conjecture is true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beresnevich V., Dickinson D., Velani S.L.: Measure Theoretic Laws for limsup Sets. Mem. Am. Math. Soc. 179(846), 1–91 (2006)

    MathSciNet  Google Scholar 

  2. Beresnevich V., Velani S.L.: A Mass Transference Principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. Math. 164, 971–992 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beresnevich, V., Velani, S.L.: Schmidt’s theorem. In: Hausdorff Measures and Slicing, IMRN, Article ID 48794 (2006)

  4. Beresnevich, V., Velani, S.L.: Ubiquity and a general logarithm law for geodesics. In: Yann Bugeaud, Francoise Dal’Bo and Cornelia Drutu (eds.) Proceedings of the Conference on Dynamical Systems and Diophantine Approximations. Séminaires Congrès, vol. 19, pp. 21–36 (2009)

  5. Duffin R.J., Schaeffer A.C.: Khintchine’s problem in metric Diophantine approximation. Duke Math. J. 8, 243–255 (1941)

    Article  MathSciNet  Google Scholar 

  6. Falconer, K.: The geometry of fractal sets. In: Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1985)

  7. Hardy G.H., Wright E.M.: An introduction to the theory of numbers, 6th edn. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  8. Harman G.: Some cases of the Duffin and Schaeffer conjecture. Q. J. Math. Oxford 2(41), 395–404 (1990)

    Article  MathSciNet  Google Scholar 

  9. Harman, G.: Metric number theory. In: LMS Monographs New Series, vol. 18. Clarendon Press, Oxford (1998)

  10. Pollington A.D., Vaughan R.C.: The k-dimensional Duffin and Schaeffer conjecture. Mathematika 37, 190–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vaaler J.D.: On the metric theory of Diophantine approximation. Pac. J. Math. 76, 527–539 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanju L. Velani.

Additional information

A. K. Haynes research supported by EPSRC grant EP/F027028/1.

A. D. Pollington research supported by the NSF.

S. L. Velani research supported by EPSRC grants EP/E061613/1 and EP/F027028/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, A.K., Pollington, A.D. & Velani, S.L. The Duffin–Schaeffer Conjecture with extra divergence. Math. Ann. 353, 259–273 (2012). https://doi.org/10.1007/s00208-011-0683-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0683-y

Mathematics Subject Classification (2000)

Navigation