Skip to main content
Log in

On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier–Stokes problem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study a nonhomogeneous boundary-value problem for the steady-state Navier–Stokes equations in a two-dimensional exterior domain with two orthogonal symmetry axes. The existence of a solution which tends to zero uniformly at infinity is proved under suitable parity conditions on the data of the problem. The result is obtained for arbitrary values of the flux of the boundary datum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick C.J.: Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33, 817–830 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amick C.J.: On Leray’s problem of steady Navier–Stokes flow past a body in the plane. Acta Math. 161, 71–130 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amick C.J.: On the asymptotic form of Navier–Stokes flow past a body in the plane. J. Diff. Equ. 91, 149–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Finn R., Smith D.R.: On the linearized hydrodynamical equations in two dimensions. Arch. Ration. Mech. Anal. 25, 1–25 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Finn R., Smith D.R.: On the stationary solution of the Navier–Stokes equations in two dimensions. Arch. Ration. Mech. Anal. 25, 26–39 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fujita H.: On the existence and regularity of the steady-state solutions of the Navier–Stokes equations. J. Fac. Sci. Univ. Tokyo Sect. I 9, 59–102 (1961)

    MathSciNet  MATH  Google Scholar 

  7. Fujita H.: On stationary solutions to Navier–Stokes equations in symmetric plane domains under general out-flow conditions. Pitman Res. Notes Math. 388, 16–30 (1997)

    Google Scholar 

  8. Galdi G.P.: An Introduction to the mathematical theory of the Navier–stokes equations: nonlinear steady problems, Springer tracts in natural philosophy, vol. 39. Springer, Heidelberg (1994)

    Google Scholar 

  9. Galdi, G.P.: Existence and uniqueness at low Reynolds numbers of stationary plane flow of a viscous fluid in exterior domains. Pitman Research Notes on Mathematics Series, vol. 291. Recent Developments in Theoretical Fluid Mechanics (Paseky 1992), pp. 1–33. Longman science technology, Harlow (1993)

  10. Galdi, G.P.: Stationary Navier–Stokes problem in a two-dimensional exterior domain. In: Handbook of Differential Equations, vol. 1: stationary differential equations, pp. 71–156. Elsevier science, North-Holland (2004)

  11. Galdi G.P., Simader C.G.: Existence, uniqueness and L q estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbarg D., Weinberger H.F.: Asymptotic properties of Leray’s solution of the stationary two-dimensional Navier–Stokes equations. Russian Math. Surv. 29, 109–123 (1974)

    Article  MathSciNet  Google Scholar 

  13. Gilbarg D., Weinberger H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa 5, 381–404 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  15. Ladyzhenskaya, O.A., Solonnikov, V.A.: On some problems of vector analysis and generalized formulations of boundary value problems for the Navier–Stokes equations. Zapiski Nauchn. Sem. LOMI 59, 81–116 (1976) (in Russian). English Transl.: J. Sov. Math. 10(2), 257–285 (1978)

    Google Scholar 

  16. Leray J.: Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’ hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  17. Morimoto H.: A remark on the existence of 2-D steady Navier–Stokes flow in bounded symmetric domain under general outflow condition. J. Math. Fluid Mech. 9, 411–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Russo, A.: A note on the exterior two-dimensional steady-state Navier–Stokes problem. J. Math. Fluid Mech. 11, 407–414 (2009) (Online 2007)

    Google Scholar 

  19. Russo A.: On the asymptotic behavior of D-solutions of theplane steady-state Navier–Stokes equations. Pacific J. Math. 246, 253–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Russo, R.: On Stokes’ problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 473–511. Springer, Heidelberg (2010)

  21. Sazonov, L.I.: On the existence of a stationary symmetric solution of the two-dimensional fluid flow problem. Mat. Zametki 54(6), 138–141 (1993) (in Russian). English Transl.: Math. Notes, 54(6), 1280–1283 (1993)

  22. Stein E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  23. Stokes G.G.: On the effects of the internal friction on the motion of pendulums. Trans. Cambridge Philos. Soc. 9, 8–106 (1851)

    Google Scholar 

  24. Yudovich V.I.: Eleven great problems of mathematical hydrodynamics. Mosc. Math. J. 3(2), 711–737 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Pileckas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pileckas, K., Russo, R. On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier–Stokes problem. Math. Ann. 352, 643–658 (2012). https://doi.org/10.1007/s00208-011-0653-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0653-4

Mathematics Subject Classification (2000)

Navigation