Skip to main content
Log in

Face rings of simplicial complexes with singularities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The face ring of a simplicial complex modulo m generic linear forms is shown to have finite local cohomology if and only if the link of every face of dimension m or more is nonsingular, i.e., has the homology of a wedge of spheres of the expected dimension. This is derived from an enumerative result for local cohomology of face rings modulo generic linear forms, as compared with local cohomology of the face ring itself. The enumerative result is generalized to squarefree modules. A concept of Cohen–Macaulay in codimension c is defined and characterized for arbitrary finitely generated modules and coherent sheaves. For the face ring of an r-dimensional complex Δ, it is equivalent to nonsingularity of Δ in dimension rc; for a coherent sheaf on projective space, this condition is shown to be equivalent to the same condition on any single generic hyperplane section. The characterization of nonsingularity in dimension m via finite local cohomology thus generalizes from face rings to arbitrary graded modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bruns, W., Herzog, J.: Cohen–Macaulay rings. In: Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

  2. Cuong N.T., Schenzel P., Trung N.V.: Verallgemeinerte Cohen–Macaulay-Moduln. Math. Nachr. 85, 57–73 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eisenbud D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer-Verlag, New York (1995)

    MATH  Google Scholar 

  4. Flenner H.: Die Sätze von Bertini für lokale Ringe. Math. Ann. 229(2), 97–111 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goto S., Takayama Y.: Stanley–Reisner ideals whose powers have finite length cohomologies. Proc. Am. Math. Soc. 135, 2355–2364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gräbe H.-G.: The canonical module of a Stanley–Reisner ring. J. Algebra 86, 272–281 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haghighi, H., Yassemi, S., Zaare-Nahandi, R.: A generalization of k-Cohen–Macaulay complexes. Preprint. arXiv:math.AC/0912.4097

  8. Haghighi, H., Terai, N., Yassemi, S., Zaare-Nahandi, R.: Sequentially S r simplicial complexes and sequentially S 2 graphs. arXiv:math.AC/1004.3376

  9. Miller E.: The Alexander duality functors and local duality with monomial support. J. Algebra 231, 180–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Miller, E.: Topological Cohen–Macaulay criteria for monomial ideals. In: Ene, V., Miller, E. (eds.) Combinatorial Aspects of Commutative Algebra. Contemporary Mathematics, vol. 502, pp. 137–156. American Mathematical Society, Providence (2009). arXiv:math.AC/0809.1458

  11. Miller, E., Sturmfels, B.: Combinatorial commutative algebra. In: Graduate Texts in Mathematics, vol. 227. Springer–Verlag, New York (2005)

  12. Murai S., Terai N.: h-Vectors of simplicial complexes with Serre’s conditions. Math. Res. Lett. 16(6), 1015–1028 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Reisner G.: Cohen–Macaulay quotients of polynomial rings. Adv. Math. 21, 30–49 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schäfer U., Schenzel P.: Dualizing complexes of affine semigroup rings. Trans. Am. Math. Soc. 322(2), 561–582 (1990)

    Article  MATH  Google Scholar 

  15. Schenzel P.: On the number of faces of simplicial complexes and the purity of Frobenius. Math. Z. 178, 125–142 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Spreafico M.L.: Axiomatic theory for transversality and Bertini type theorems. Arch. Math. (Basel) 70(5), 407–424 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Stanley R.: Cohen–Macaulay complexes. In: Aigner, M. (ed.) Higher Combinatorics, pp. 51–62. Reidel, Dordrecht (1977)

    Google Scholar 

  18. Stanley R.: Combinatorics and Commutative Algebra. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  19. Stückrad J., Vogel W.: Buchsbaum Rings and Applications. Springer-Verlag, Berlin (1986)

    Google Scholar 

  20. Trung N.V.: Toward a theory of generalized Cohen–Macaulay modules. Nagoya Math. J. 102, 1–49 (1986)

    MathSciNet  Google Scholar 

  21. Takayama Y.: Combinatorial characterizations of generalized Cohen–Macaulay ideals. Bull. Math. Soc. Sci. Math. Roumanie 48(96), 327–344 (2005)

    MathSciNet  Google Scholar 

  22. Yanagawa K.: Alexander duality for Stanley-Reisner rings and squarefree \({\mathbb{N}^n}\)-graded modules. J. Algebra 225(2), 630–645 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezra Miller.

Additional information

E. Miller was supported by NSF Career DMS-0449102 = DMS-1014112 and NSF DMS-1001437; I. Novik was supported by an Alfred P. Sloan Research Fellowship and NSF DMS-0801152; and E. Swartz was supported by NSF DMS-0900912.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, E., Novik, I. & Swartz, E. Face rings of simplicial complexes with singularities. Math. Ann. 351, 857–875 (2011). https://doi.org/10.1007/s00208-010-0620-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0620-5

Mathematics Subject Classification (2010)

Navigation