Advertisement

Mathematische Annalen

, Volume 350, Issue 4, pp 973–1022 | Cite as

Integral Deligne cohomology for real varieties

  • Pedro F. dos SantosEmail author
  • Paulo Lima-Filho
Article

Abstract

We develop an integral version of Deligne cohomology for smooth proper real varieties. For this purpose the role played by singular cohomology in the complex case has to be replaced by the ordinary bigraded \({Gal(\mathbb{C}/{\mathbb{R}})}\)-equivariant cohomology of Lewis et al. (Bull Am Math Soc (N.S.) 4(2):208–212, 1981), the equivariant counterpart of singular cohomology. The theory is aimed at giving more precise information about the 2-primary components of regulators. We establish basic properties and give a geometric interpretation for the groups in dimension 2 in weights 1 and 2.

Keywords

Exact Sequence Line Bundle Real Variety Equivariant Cohomology Holomorphic Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M.F.: K-theory and reality. Quart. J. Math. Oxford Ser. 17(2), 367–386 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Auer J.W.: Stokes’ theorem for smooth bundles. Tensor (N.S.) 30(2), 110–114 (1976)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Beĭlinson, A.A.: Higher regulators and values of L-functions. In: Current Problems in Mathematics, vol. 24, pp. 181–238. Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1984)Google Scholar
  4. 4.
    Bloch, S.: Algebraic cycles and the Beĭlinson conjectures. In: The Lefschetz Centennial Conference, Part I (Mexico City, 1984). Contemp. Math., vol. 58, pp. 65–79. Amer. Math. Soc., Providence (1986)Google Scholar
  5. 5.
    Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7(1974), 181–201 (1975)Google Scholar
  6. 6.
    Bredon, G.E.: Equivariant cohomology theories. In: Lecture Notes in Mathematics, vol. 34. Springer-Verlag, Berlin (1967)Google Scholar
  7. 7.
    Dugger D., Isaksen D.C.: Topological hypercovers and \({\mathbb{A}^{1}}\)-realizations. Math. Z. 246(4), 667–689 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    dos Santos P.F.: Algebraic cycles on real varieties and \({\mathbb{Z}/2}\)-equivariant homotopy theory. Proc. Lond. Math. Soc. (3) 86(2), 513–544 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    dos Santos P.F.: A note on the equivariant Dold-Thom theorem. J. Pure Appl. Algebra 183(1–3), 299–312 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    dos Santos P.F., Lima-Filho P.: Bigraded equivariant cohomology of real quadrics. Adv. Math. 221, 1247–1280 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eilenberg S., Steenrod N.: Foundations of Algebraic Topology. Princeton University Press, Princeton (1952)zbMATHGoogle Scholar
  12. 12.
    Esnault, H., Viehweg, E.: Deligne-Beĭlinson cohomology. In: Beĭlinson’s Conjectures on Special Values of L-Functions. Perspectives in Mathematics, vol. 4, pp. 43–91. Academic Press, Boston (1988)Google Scholar
  13. 13.
    Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles. In: Pure and Applied Mathematics, vol. 47. Academic Press, New York (1972)Google Scholar
  14. 14.
    Gillet H.: Deligne homology and Abel-Jacobi maps. Bull. Am. Math. Soc. (N.S.) 10(2), 285–288 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jannsen, U.: Deligne homology, Hodge-\({\mathcal{D}}\)-conjecture, and motives, Beĭlinson’s conjectures on special values of L-functions. In: Perspectives in Mathematics, vol. 4, pp. 305–372. Academic Press, Boston (1988)Google Scholar
  16. 16.
    Karpenko N.A.: Cohomology of relative cellular spaces and of isotropic flag varieties. Algebra i Analiz 12(1), 3–69 (2000)MathSciNetGoogle Scholar
  17. 17.
    Kerr M., Lewis J.D.: The Abel-Jacobi map for higher Chow groups, II. Invent. Math. 170(2), 355–420 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kerr M., Lewis J.D., Müller-Stach S.: The Abel-Jacobi map for higher Chow groups. Compos. Math. 142(2), 374–396 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Krasnov V.A.: Characteristic classes of vector bundles on a real algebraic variety. Izv. Akad. Nauk SSSR Ser. Mat. 55(4), 716–746 (1991)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Lawson H.B., Lima-Filho P., Michelsohn M.-L.: Algebraic cycles and the classical groups. Part I: real cycles. Topology 42(2), 467–506 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lewis G., May J.P., McClure J.: Ordinary RO(G)-graded cohomology. Bull. Am. Math. Soc. (N.S.) 4(2), 208–212 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lewis, L.G. Jr., May, J.P., Steinberger, M., McClure, J.E.: Equivariant stable homotopy theory. In: Lecture Notes in Mathematics, vol. 1213. Springer-Verlag, Berlin (1986). With contributions by J.E. McClureGoogle Scholar
  23. 23.
    May, J.P.: Equivariant homotopy and cohomology theory. In: CBMS Regional Conference Series in Mathematics, vol. 91. Published for the Conference Board of the Mathematical Sciences, Washington, DC. With contributions by M. Cole, G. Comezana, S. Costenoble, A.D. Elmendorf, J.P.C. Greenlees, L.G. Lewis Jr., R.J. Piacenza, G. Triantafillou, S. Waner (1996)Google Scholar
  24. 24.
    Morel, F., Voevodsky, V.: A1-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. (1999), 90, 45–143 (2001)Google Scholar
  25. 25.
    Mazza, C., Voevodsky, V., Weibel, C.: Lecture notes on motivic cohomology. In: Clay Mathematics Monographs, vol. 2. American Mathematical Society, Providence (2006)Google Scholar
  26. 26.
    Pedrini, C., Weibel, C.: Invariants of real curves. Rend. Sem. Mat. Univ. Politec. Torino 49(1991) (2), 139–173 (1993)Google Scholar
  27. 27.
    Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Springer-Verlag, Berlin (1972). Séminaire de Géométrie Algébrique du Bois-Marie, 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, vol. 269Google Scholar
  28. 28.
    Witt E.: Zerlegung reeler algebraischer Funktionen in Quadrate, Schiefkörper über reellem Funktionenkörper. J. Reine Angew. Math. 171, 4–11 (1934)CrossRefGoogle Scholar
  29. 29.
    Yang, H.: RO(G)-graded equivariant cohomology theory and sheaves. Ph.D. thesis, Texas A&M University (2008)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Departamento de MatemáticaInstituto Superior TécnicoLisbonPortugal
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations