Mathematische Annalen

, Volume 350, Issue 4, pp 801–827 | Cite as

Multiple blow-up for a porous medium equation with reaction

  • Noriko MizoguchiEmail author
  • Fernando Quirós
  • Juan Luis Vázquez


The present paper is concerned with the Cauchy problem
$$\left\{\begin{array}{ll}\partial_t u = \Delta u^m + u^p & \quad {\rm in}\; \mathbb R^N \times (0,\infty),\\ u(x,0) = u_0(x) \geq 0 & \quad {\rm in}\; \mathbb R^N, \end{array}\right.$$
with p, m > 1. A solution u with bounded initial data is said to blow up at a finite time T if \({{\lim {\rm sup}_{t \nearrow T}||u(t)||_{L^\infty(\mathbb{R}^N)} =\infty}}\). For N ≥ 3 we obtain, in a certain range of values of p, weak solutions which blow up at several times and become bounded in intervals between these blow-up times. We also prove a result of a more technical nature: proper solutions are weak solutions up to the complete blow-up time.

Mathematics Subject Classification (2000)

35K20 35K55 58K57 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angenent S.B.: The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79–96 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aronson D.G., Caffarelli L.A.: The initial trace of a solution of the porous medium equation. Trans. Am. Math. Soc. 280(1), 351–366 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baras P., Cohen L.: Complete blow-up after T max for the solution of a semilinear heat equation. J. Funct. Anal. 71(1), 142–174 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brézis H., Crandall M.G.: Uniqueness of solutions of the initial-value problem for \({u_{t}-\Delta \varphi(u)=0}\) . J. Math. Pures Appl. (9) 58(2), 153–163 (1979)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen X.-Y., Polá̆cik P.: Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. J. Reine Angew. Math. 472, 17–51 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cortázar C., del Pino M., Elgueta M.: On the blow-up set for u t = Δu m + u m, m > 1. Indiana Univ. Math. J. 47(2), 541–561 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    diBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993). ISBN 0-387-94020-0Google Scholar
  8. 8.
    Fila, M.: Blow-up Solutions of Supercritical Parabolic Equations. In: Handbook of Differential Equations, vol. II, pp. 105–158. Elsevier, Amsterdam (2005)Google Scholar
  9. 9.
    Fila M., Matano H., Poláčik P.: Immediate regularization after blow-up. SIAM J. Math. Anal. 37(3), 752–776 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fujita H.: On the blowing-up of solutions of the Cauchy problem for u t = Δu + u 1 + α. J. Fac. Sci. Univ. Tokyo Sect. I 13, 109–124 (1966)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Galaktionov V.A.: Blow-up for quasilinear heat equations with critical Fujita exponents. Proc. R. Soc. Edinb. A 124(3), 517–525 (1994)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Galaktionov, V.A.: Geometric Sturmian theory of nonlinear parabolic equations and applications. In: CRC Applied Mathematics and Nonlinear Science Series, vol. 3. Chapman & Hall, Boca Raton (2004). ISBN 1-58488-462-2Google Scholar
  13. 13.
    Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Samarskii A.A.: Unbounded solutions of the Cauchy problem for the parabolic equation u t = ∇(u σu) + u β. Sov. Phys. Dokl. 25, 458–459 (1980)zbMATHGoogle Scholar
  14. 14.
    Galaktionov V.A., Vázquez J.L.: Continuation of blowup solutions of nonlinear heat equations in several dimensions. Commun. Pure Appl. Math. 50(1), 1–67 (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Giga Y., Kohn R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Giga Y., Kohn R.V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36(1), 1–40 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Giga Y., Kohn R.V.: Nondegeneracy of blowup for semilinear heat equations. Commun. Pure Appl. Math. 42(6), 845–884 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hayakawa K.: On nonexistence of global solutions of some semilinear parabolic differential equations. Proc. Jpn. Acad. Ser. A 49, 503–505 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Herrero M.A., Velázquez J.J.L.: Explosion de solutions des équations paraboliques semilinéaires supercritiques. C. R. Acad. Sci. Paris Sér. I Math. 319(2), 141–145 (1994)zbMATHGoogle Scholar
  20. 20.
    Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Ration. Mech. Anal. 49, 241–269 (1972/1973)Google Scholar
  21. 21.
    Kaplan S.: On the growth of solutions of quasilinear parabolic equations. Commun. Pure Appl. Math. 16, 305–330 (1963)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kobayashi K., Sirao T., Tanaka H.: On the growing up problems for semilinear heat equations. J. Math. Soc. Jpn. 29(3), 407–424 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lacey A.A., Tzanetis D.: Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition. IMA J. Appl. Math. 41(3), 207–215 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lacey A.A., Tzanetis D.E.: Global, unbounded solutions to a parabolic equation. J. Differ. Equ. 101(1), 80–102 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lepin L.A.: Self-similar solutions of a semilinear heat equation. Mat. Model 2(3), 63–74 (1990) (in Russian)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Martel Y.: Complete blow up and global behaviour of solutions of u t−Δu = g(u). Ann. Inst. H. Poincaré Anal. Non Linéaire 15(6), 687–723 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Matano H.: Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(2), 401–441 (1982)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Matano H., Merle F.: On non-existence of type II blow-up for a supercritical nonlinear heat equation. Commun. Pure Appl. Math. 57(11), 1494–1541 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Matano H., Merle F.: Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 256, 992–1064 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Mizoguchi N.: On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity. Math. Z. 239(2), 215–229 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Mizoguchi N.: Various behaviors of solutions for a semilinear heat equation after blowup. J. Funct. Anal. 220(1), 214–227 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Mizoguchi N.: Multiple blowup of solutions for a semilinear heat equation. Math. Ann. 331(2), 461–473 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Mizoguchi N.: Multiple blowup of solutions for a semilinear heat equation II. J. Differ. Equ. 231(1), 182–194 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Mizoguchi N., Vázquez J.L.: Multiple blowup for nonlinear heat equations at different places and different times. Indiana Univ. Math J. 56(6), 2859–2886 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Mochizuki K., Suzuki R.: Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in R N. J. Math. Soc. Jpn 44(3), 485–504 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Ni W.-M., Sacks P.E., Tavantzis J.: On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differ. Equ. 54(1), 97–120 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Pablo A., Vázquez J.L.: Travelling waves and finite propagation in a reaction-diffusion equation. J. Differ. Equ. 93(1), 19–61 (1991)zbMATHCrossRefGoogle Scholar
  38. 38.
    Quirós F., Vázquez J.L.: Asymptotic behaviour of the porous media equation in an exterior domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(2), 183–227 (1999)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Quittner, P., Souplet, Ph.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2007). ISBN 978-3-7643-8441-8Google Scholar
  40. 40.
    Sacks P.E.: The initial and boundary value problem for a class of degenerate parabolic equations. Commun. Partial Differ. Equ. 8(7), 693–733 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-up in quasilinear parabolic equations. Nauka, Moscow (1987) (in Russian). English transl.: de Gruyter Expositions in Mathematics, 19. Walter de Gruyter & Co., Berlin (1995). ISBN 3-11-012754-7Google Scholar
  42. 42.
    Suzuki R.: Complete blow-up for quasilinear degenerate parabolic equations. Proc. R. Soc. Edinb. A 130(4), 877–908 (2000)zbMATHCrossRefGoogle Scholar
  43. 43.
    Vázquez, J.L.: The porous medium equation. Mathematical theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007). ISBN 978-0-19-856903-9Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Noriko Mizoguchi
    • 1
    • 2
    Email author
  • Fernando Quirós
    • 3
  • Juan Luis Vázquez
    • 4
  1. 1.Department of MathematicsTokyo Gakugei UniversityKoganeiJapan
  2. 2.Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)SaitamaJapan
  3. 3.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  4. 4.Departamento de Matemáticas and ICMATUniversidad Autónoma de MadridMadridSpain

Personalised recommendations