Advertisement

Mathematische Annalen

, Volume 350, Issue 4, pp 829–866 | Cite as

Purity for Hodge-Tate representations

  • Takeshi TsujiEmail author
Article

Abstract

We prove that a kind of purity holds for Hodge-Tate representations of the fundamental group of the generic fiber of a semi-stable scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field. As an application, we see that the relative p-adic étale cohomology with proper support of a scheme separated of finite type over the generic fiber is Hodge-Tate if it is locally constant.

Mathematics Subject Classification (2000)

11F80 14F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger L., Colmez P.: Familles de représentations de de Rham et monodromie p-adique. Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et \({(\phi,\Gamma)}\)-modules. Astérisque 319, 303–337 (2008)Google Scholar
  2. 2.
    Andreatta F., Brinon O.: Surconvergence des représentations p-adiques: le cas relatif. Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et \({(\phi,\Gamma)}\)-modules. Astérisque 319, 39–116 (2008)MathSciNetGoogle Scholar
  3. 3.
    Bosch S., Güntzer U., Remmert R.: Non-Archimedean Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984)Google Scholar
  4. 4.
    Bourbaki N.: Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitres 3 et 4. Hermann, Paris (1961)Google Scholar
  5. 5.
    Brinon, O.: Représentations p-adiques cristallines et de de Rham dans le cas relatif. Mém. Soc. Math. Fr. (N.S.) 112 (2008)Google Scholar
  6. 6.
    Brinon O.: Une généralisation de la théorie de Sen. Math. Ann. 327(4), 793–813 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brinon O.: Représentations cristallines dans le cas d’un corps résiduel imparfait. Ann. Inst. Fourier (Grenoble) 56(4), 919–999 (2006)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Grothendieck, A.: Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math. 24 (1965)Google Scholar
  9. 9.
    Faltings G.: p-adic Hodge theory. J. AMS 1, 255–299 (1988)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Faltings, G.: Crystalline cohomology and p-adic Galois representations. Algebraic analysis, geometry, and number theory, pp. 25–80. Johns Hopkins University Press, Baltimore (1989)Google Scholar
  11. 11.
    Faltings G.: Almost étale extensions. Cohomologies p-adiques et applications arithmétiques, II. Astérisque 279, 185–270 (2002)MathSciNetGoogle Scholar
  12. 12.
    Fontaine J.-M.: Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate. Ann. Math. 115, 529–577 (1982)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fontaine J.-M.: Le corps des périodes p-adiques. Périodes p-adiques, Séminaire de Bures, 1988. Astérisque 223, 59–111 (1994)MathSciNetGoogle Scholar
  14. 14.
    Hyodo O.: On variation of Hodge-Tate structures. Math. Ann. 284(1), 7–22 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kato, K.: Logarithmic structures of Fontaine-Illusie. Algebraic analysis, geometry, and number Theory (Baltimore, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989)Google Scholar
  16. 16.
    Kato K.: Toric singularities. Am. J. Math. 116(5), 1073–1099 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kisin M.: Potential semi-stability of p-adic étale cohomology. Israel J. Math. 129, 157–173 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nakayama C.: Logarithmic étale cohomology. Math. Ann. 308(3), 365–404 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Morita K.: Hodge-Tate and de Rham representations in the imperfect residue field case. Ann. Sci. École Norm. Sup. (4) 43(2), 341–356 (2010)zbMATHGoogle Scholar
  20. 20.
    Raynaud M.: Anneaux locaux henséliens. Lecture Notes in Mathematics, vol. 169. Springer, Berlin (1970)Google Scholar
  21. 21.
    Sen S.: Continuous cohomology and p-adic Galois representations. Invent. Math. 62(1), 89–116 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Cohomologie l-adique et fonctions L. Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie. Lecture Notes in Mathematics, vol.589. Springer, Berlin (1977)Google Scholar
  23. 23.
    Tate, J.: p-divisible groups. In: Proceedings of a Conference on local fields, Driebergen 1966, pp. 158–183. Springer, Berlin (1967)Google Scholar
  24. 24.
    Tsuji, T.: p-adic Hodge theory in the semi-stable reduction case. In: Proceedings of the International Congress of Mathematicians, vol. II (Berlin, 1998). Doc. Math. Extra Vol. II (1998), pp. 207–216 (electronic)Google Scholar
  25. 25.
    Tsuji T.: p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137, 233–411 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tsuji T.: On p-adic nearby cycles of log smooth families. Bull. Soc. Math. France 128(4), 529–575 (2000)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Tsuji, T.: Crystalline sheaves and filtered convergent F-isocrystals on log schemes. PreprintGoogle Scholar
  28. 28.
    Wintenberger J.-P.: Une généralisation d’un théorème de Tate-Sen-Ax. C. R. Acad. Sci. Paris Sér. I Math. 307(2), 63–65 (1988)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Yamashita, G.: p-adic étale cohomology and crystalline cohomology for open varieties with semistable reduction. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations