Skip to main content
Log in

Multiplier ideal sheaves and integral invariants on toric Fano manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We extend Nadel’s results on some conditions for the multiplier ideal sheaves to satisfy which are described in terms of an obstruction defined by the first author. Applying our extension we can determine the multiplier ideal subvarieties on toric del Pezzo surfaces which do not admit Kähler–Einstein metrics. We also show that one can define multiplier ideal sheaves for Kähler–Ricci solitons and extend the result of Nadel using the holomorphic invariant defined by Tian and Zhu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin T.: Réduction du cas positif de l’équations de Monge–Ampère sur les variétés kählériennes compactes á la demonstration d’une inégalité. J. Funct. Anal. 57, 143–153 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batyrev V.V., Selivanova E.N.: Einstein–Kähler metrics on symmetric toric Fano manifolds. J. Reine Angew. Math. 512, 225–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao H.D., Tian G., Zhu X.: Kähler–Ricci solitons on compact complex manifolds with C 1(M) > 0. Geom. Funct. Anal. 15, 697–719 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donaldson S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Futaki A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73, 437–443 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Futaki, A.: Kähler–Einstein metrics and integral invariants. In: Lecture Notes in Mathematics, vol. 1314. Springer, Berlin (1988)

  7. Futaki A., Morita S.: Invariant polynomials of the automorphism group of a compact complex manifold. J. Differ. Geom. 21, 135–142 (1985)

    MathSciNet  MATH  Google Scholar 

  8. Mabuchi T.: An algebraic character associated with the Poisson brackets. In: Ochiai, T. (eds) Recent Topics in Differential and Analytic Geometry. Advanced Studies in Pure Mathematics, vol. 18-I, pp. 339–358. Kinokuniya, Tokyo (1990)

    Google Scholar 

  9. Mabuchi T.: Multiplier Hermitian structures on Kähler manifolds. Nagoya Math. J. 170, 73–115 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Nadel A.M.: Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature. Ann. Math. (2) 132(3), 549–596 (1990)

    Article  MathSciNet  Google Scholar 

  11. Nadel, A.M.: Multiplier ideal sheaves and Futakifs invariant. In: Geometric Theory of Singular Phenomena in Partial Differential Equations (Cortona, 1995). Symposium in Mathematics, vol. XXXVIII, pp. 7–16. Cambridge University Press, Cambridge (1995)

  12. Panov, D., Ross, J.: Slope stability and exceptional divisors of high genus. (2009). arXiv:0710.4078v1 [math.AG]

  13. Phong, D.H., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kähler–Ricci flow. (2007). arXive:math/0611794

  14. Ross J., Thomas R.P.: An obstruction to the existence of constant scalar curvature Kähler metrics. J. Differ. Geom. 72(3), 429–466 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Rubinstein, Y.A.: The Ricci iteration and its applications. C. R. Acad. Sci. Paris Ser. I 345, 445–448 (2007). arXiv:0706.2777

  16. Rubinstein, Y.A.: On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow. Trans. Am. Math. Soc. (2010, to appear). arXive:math/0708.1590

  17. Rubinstein, Y.A.: Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, I. (2007). arXive:math/0709.0990

  18. Song J.: The α-invariant on toric Fano manifolds. Am. J. Math. 127(6), 1247–1259 (2005)

    Article  MATH  Google Scholar 

  19. Tian G.: On Kähler–Einstein metrics on certain Kähler manifolds with C 1(M) > 0. Invent. Math. 89(2), 225–246 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian, G.: Canonical metrics in Kähler geometry. In: Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2000)

  21. Tian G., Zhu X.: Uniqueness of Kähler–Ricci solitons. Acta Math. 184, 271–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian G., Zhu X.: A new holomorphic invariant and uniqueness of Kähler–Ricci solitons. Comment. Math. Helv 77(2), 297–325 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian G., Zhu X.: Convergence of Kähler–Ricci flow. J. Am. Math. Soc. 20(3), 675–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang X.J., Zhu X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yau S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Comm. Pure Appl. Math. 31, 339–441 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu X.: Kähler–Ricci soliton type equations on compact complex manifolds with C 1(M) > 0. J. Geom. Anal. 10, 759–774 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Zhu, X.: Kähler–Ricci flow on a toric manifold with positive first Chern class. arXiv:math.DG/0703486 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akito Futaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futaki, A., Sano, Y. Multiplier ideal sheaves and integral invariants on toric Fano manifolds. Math. Ann. 350, 245–267 (2011). https://doi.org/10.1007/s00208-010-0556-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0556-9

Mathematics Subject Classification (2000)

Navigation