Skip to main content
Log in

An R = T theorem for imaginary quadratic fields

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove the modularity of certain residually reducible p-adic Galois representations of an imaginary quadratic field assuming the uniqueness of the residual representation. We obtain an R = T theorem using a new commutative algebra criterion that might be of independent interest. To apply the criterion, one needs to show that the quotient of the universal deformation ring R by its ideal of reducibility is cyclic Artinian of order no greater than the order of the congruence module T/J, where J is an Eisenstein ideal in the local Hecke algebra T. The inequality is proven by applying the Main conjecture of Iwasawa Theory for Hecke characters and using a result of Berger [Compos Math 145(3):603–632, 2009]. This strengthens our previous result [Berger and Klosin, J Inst Math Jussieu 8(4):669–692, 2009] to include the cases of an arbitrary p-adic valuation of the L-value, in particular, cases when R is not a discrete valuation ring. As a consequence we show that the Eisenstein ideal is principal and that T is a complete intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellaïche J., Chenevier G.: Lissité de la courbe de Hecke de GL2 aux points Eisenstein critiques. J. Inst. Math. Jussieu 5(2), 333–349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger, T.: An Eisenstein ideal for imaginary quadratic fields, Thesis, University of Michigan, Ann Arbor (2005)

  4. Berger T.: Denominators of Eisenstein cohomology classes for GL2 over imaginary quadratic fields. Manuscripta Math. 125(4), 427–470 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger T.: On the Eisenstein ideal for imaginary quadratic fields. Compos. Math. 145(3), 603–632 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berger, T., Harcos, G.: l-adic representations associated to modular forms over imaginary quadratic fields. Int. Math. Res. Not. IMRN, no.23, Art. ID rnm113 16 (2007)

  7. Berger T., Klosin K.: A deformation problem for Galois representations over imaginary quadratic fields. J. Inst. Math. Jussieu 8(4), 669–692 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Am. Math. Soc. 14(4), 843–939 (2001) (electronic)

    Google Scholar 

  9. Calegari F.: Eisenstein deformation rings. Compos. Math. 142(1), 63–83 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calegari, F., Dunfield, N.M.: Automorphic forms and rational homology 3-spheres. Geom. Topol. 10, 295–329 (electronic) (2006)

    Google Scholar 

  11. Calegari F., Emerton M.: On the ramification of Hecke algebras at Eisenstein primes. Invent. Math. 160(1), 97–144 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Shalit, E.: Hecke rings and universal deformation rings. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 421–445. Springer, New York (1997)

  13. Eisenbud D.: Commutative algebra with a view toward algebraic geometry In: Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

  14. Fujiwara, K.: Deformation rings and Hecke algebras in the totally real case, Preprint (1999)

  15. Hida H.: Kummer’s criterion for the special values of Hecke L-functions of imaginary quadratic fields and congruences among cusp forms. Invent. Math. 66(3), 415–459 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kisin, M.: The Fontaine-Mazur conjecture for GL2, Preprint (2007)

  17. Mazur B. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. (1977) 47, 33–186 (1978)

  18. Mazur, B.: An introduction to the deformation theory of Galois representations. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 243–311. Springer, New York (1997)

  19. Mazur B., Wiles A.: Class fields of abelian extensions of Q. Invent. Math. 76(2), 179–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Milne, J.S.: Arithmetic duality theorems, 2nd edn. BookSurge, LLC, Charleston, SC (2006)

  21. Ribet K.A.: A modular construction of unramified p-extensions of Q(μ p ). Invent. Math. 34(3), 151–162 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Skinner C.M., Wiles A.J.: Ordinary representations and modular forms. Proc. Natl. Acad. Sci. USA 94(20), 10520–10527 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. (1999) 89, 5–126 (2000)

    Google Scholar 

  24. Skinner C.M., Wiles A.J.: Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. (6) 10(1), 185–215 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Taylor, R.: On congruences between modular forms, Thesis, Princeton University, Princeton (1988)

  26. Taylor R.: Remarks on a conjecture of Fontaine and Mazur. J. Inst. Math. Jussieu 1(1), 125–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Taylor R., Wiles A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tilouine, J.: Deformations of Galois representations and Hecke algebras. Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad (1996)

  29. Urban E.: Formes automorphes cuspidales pour GL2 sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences. Compositio Math. 99(3), 283–324 (1995)

    MATH  MathSciNet  Google Scholar 

  30. Urban E.: Module de congruences pour GL(2) d’un corps imaginaire quadratique et théorie d’Iwasawa d’un corps CM biquadratique. Duke Math. J. 92(1), 179–220 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Urban E.: On residually reducible representations on local rings. J. Algebra 212(2), 738–742 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Urban, E.: Sur les représentations p-adiques associées aux représentations cuspidales de \({{\rm GSp}_{4/{\mathbb{Q} }}}\) , Astérisque , no. 302, pp. 151–176, Formes automorphes. II. Le cas du groupe GSp(4) (2005)

  33. Wiles A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T., Klosin, K. An R = T theorem for imaginary quadratic fields. Math. Ann. 349, 675–703 (2011). https://doi.org/10.1007/s00208-010-0540-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0540-4

Mathematics Subject Classification (2000)

Navigation