Skip to main content
Log in

Random groups do not split

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that random groups in the Gromov density model, at any density, satisfy property (FA), i.e. they do not act non-trivially on simplicial trees. This implies that their Gromov boundaries, defined at density less than \({\frac{1}{2}}\) , are Menger curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bestvina M.: Degenerations of the hyperbolic space. Duke Math. J. 56(1), 143–161 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bestvina M., Feighn M.: Stable actions of groups on real trees. Invent. Math. 121(2), 287–321 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bestvina M., Mess G.: The boundary of negatively curved groups. J. Am. Math. Soc. 4(3), 469–481 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Champetier C.: Propriétés statistiques des groupes de présentation finie. Adv. Math. 116(2), 197–262 (1995) (French, with English summary)

    Article  MATH  MathSciNet  Google Scholar 

  5. Delzant, T., Papasoglu, P.: Codimension one subgroups and boundaries of hyperbolic groups (2008). arXiv:0807.2932

  6. Gaboriau D., Levitt G., Paulin F.: Pseudogroups of isometries of R and Rips’ theorem on free actions on R-trees. Israel J. Math. 87(1–3), 403–428 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2 (Sussex, 1991). London Mathematical Society Lecture Note Series, vol. 182, pp. 1–295. Cambridge University Press, Cambridge (1993)

  8. Groves, D.: Limit groups for relatively hyperbolic groups, i: the basic tools (2008). arxiv:Math. GR/0412492

  9. Guirardel, V.: Actions of finitely generated groups on \({\mathbb{R}}\) -trees. Ann. Inst. Fourier (Grenoble) 58(1), 159–211 (2008) (English, with English and French summaries)

    MATH  MathSciNet  Google Scholar 

  10. Kapovich M., Kleiner B.: Hyperbolic groups with low-dimensional boundary. Ann. Sci. École Norm. Sup. (4) 33(5), 647–669 (2000) (English, with English and French summaries)

    MATH  MathSciNet  Google Scholar 

  11. Ollivier Y.: Sharp phase transition theorems for hyperbolicity of random groups. Geom. Funct. Anal. 14(3), 595–679 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ollivier, Y.: A January 2005 invitation to random groups. In: Ensaios Matemáticos (Mathematical Surveys), vol. 10. Sociedade Brasileira de Matemática, Rio de Janeiro (2005)

  13. Ollivier, Y., Wise, D.T.: Cubulating groups at density 1/6. (2005, preprint)

  14. Paulin, F.: Outer automorphisms of hyperbolic groups and small actions on R-trees. In: Arboreal group theory (Math. Sci. Res. Inst. Publ., Berkeley, CA, 1988), vol. 19, pp. 331–343. Springer, New York (1991)

  15. Pride S.J.: Some finitely presented groups of cohomological dimension two with property (FA). J. Pure Appl. Algebra 29(2), 167–168 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sela Z.: Acylindrical accessibility for groups. Invent. Math. 129(3), 527–565 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sela, Z.: Diophantine geometry over groups VII: the elementary theory of a hyperbolic group. Proc. Lond. Math. Soc. (2010, to appear)

  18. Serre, J.-P.: Arbres, amalgames, SL2, Société Mathématique de France, Paris 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de H. Bass; Astérisque, No. 46

  19. Żuk A.: Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal. 13(3), 643–670 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Przytycki.

Additional information

F. Dahmani and V. Guirardel were partially supported by ANR Grant ANR–06-JCJC-0099-01. P. Przytycki was partially supported by MNiSW Grant N201 012 32/0718, the Foundation for Polish Science, and ANR Grant ZR58.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahmani, F., Guirardel, V. & Przytycki, P. Random groups do not split. Math. Ann. 349, 657–673 (2011). https://doi.org/10.1007/s00208-010-0532-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0532-4

Mathematics Subject Classification (2000)

Navigation