Skip to main content
Log in

Pontrjagin–Thom maps and the homology of the moduli stack of stable curves

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the singular homology (with field coefficients) of the moduli stack \({\overline{\mathfrak{M}}_{g, n}}\) of stable n-pointed complex curves of genus g. Each irreducible boundary component of \({\overline{\mathfrak{M}}_{g, n}}\) determines via the Pontrjagin–Thom construction a map from \({\overline{\mathfrak{M}}_{g, n}}\) to a certain infinite loop space whose homology is well understood. We show that these maps are surjective on homology in a range of degrees proportional to the genus. This detects many new torsion classes in the homology of \({\overline{\mathfrak{M}}_{g, n}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bers L.: Finite-dimensional Teichmüller spaces and generalizations. Bull. Am. Math. Soc. 5(2), 131–172 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Betley S.: Twisted homology of symmetric groups. Proc. Am. Math. Soc. 130(12), 3439–3445 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boldsen, S.K.: Improved homological stability for the mapping class group with integral or twisted coefficients, Ph.D. thesis, Århus Universitet, 2009, preprint, arXiv:0904.3269

  4. Bödigheimer, C.-F., Tillmann, U.: Stripping and Splitting Decorated Mapping Class groups, Cohomological Methods in Homotopy Theory (Bellaterra, 1998), Progr. Math., vol. 196, pp. 47–57. Birkhäuser, Basel (2001)

  5. Deligne P., Mumford D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75–109 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ebert, J.: The Homotopy Type of a Topological Stack. Preprint, arXiv:0901.3295

  7. Edidin, D.: Notes on the construction of the moduli space of curves, Recent Progress in Intersection Theory (Bologna, 1997), Trends Math., pp. 85–113. Birkhäuser Boston, Boston (2000)

  8. Freed, D., Hopkins, M., Teleman, C.: Loop Groups and Twisted K-theory I. Preprint, arXiv:0711.1906, 2007

  9. Galatius S.: Mod p homology of the stable mapping class group. Topology 43(5), 1105–1132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Galatius S., Eliashberg Y.: Homotopy theory of compactified moduli spaces. Oberwolfach Reports 13, 761–766 (2006)

    Google Scholar 

  11. Galatius S., Madsen I., Tillmann U., Weiss M.: The homotopy type of the cobordism category. Acta Math. 202, 195–239 (2009)

    Article  MathSciNet  Google Scholar 

  12. Haefliger, A.: Groupoïdes d’holonomie et classifiant, Transversal structure of foliations, Toulouse (1982). Asterisque no. 116, pp. 70–97 (1984)

  13. Hanbury E.: Homological stability of non-orientable mapping class groups with marked points. Proc. Am. Math. Soc. 137(1), 385–392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hatcher, A.: Vector Bundles and K-Theory, book in preparation, available at http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html

  15. Heinloth, J.: Some notes on differentiable stacks, Mathematisches Institut, Seminars 2004/2005, Universität Göttingen, pp. 1–32 (2005)

  16. Harris J., Morrison I.: Moduli of curves, Graduate Texts in Mathematics, vol. 187. Springer, New York (1998)

    Google Scholar 

  17. Hatcher, A., Wahl, N.: Stabilization for mapping class groups of 3-manifolds. Duke Math. J. (to appear) arXiv:math/0709.2173, 2007

  18. Knudsen F.: The projectivity of the moduli space of stable curves. II. The stacks M g,n. Math. Scand. 52(2), 161–199 (1983)

    MATH  MathSciNet  Google Scholar 

  19. Kan D.M., Thurston W.P.: Every connected space has the homology of a K(π, 1). Topology 15(3), 253–258 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Laumon, G., Moret-Bailly, L.: Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 39. Springer, Berlin (2000)

  21. May, J.P.: The Homology of E -spaces, The homology of Iterated Loop Spaces, Lecture Notes in Mathematics, Vol. 533. Springer, Berlin (1976)

  22. Milnor J.W., Moore J.C.: On the structure of Hopf algebras. Ann. Math. 81, 211–264 (1965)

    Article  MathSciNet  Google Scholar 

  23. Moerdijk, I.: Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Am. Math. Soc., Providence, RI, pp. 205–222 (2002)

  24. Mostow G.D.: Equivariant embeddings in Euclidean space. Ann. Math. 65, 432–446 (1957)

    Article  MathSciNet  Google Scholar 

  25. McDuff D., Segal G.: Homology fibrations and the “group-completion” theorem. Invent. Math. 31(3), 279–284 (1975)

    Article  MathSciNet  Google Scholar 

  26. Madsen I., Tillmann U.: The stable mapping class group and \({Q(\mathbb{C}P^\infty_+)}\). Invent. Math. 145(3), 509–544 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Madsen I., Weiss M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. Math. 165, 843–941 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Noohi, B.: Foundations of Topological Stacks I, preprint, arXiv:math/0503247, 2005

  29. Noohi, B.: Homotopy Types of Stacks. Preprint, arXiv:0808.3799, 2008

  30. Robbin J.W., Salamon D.A.: A construction of the Deligne–Mumford orbifold. J. Eur. Math. Soc. 8(4), 611–699 (2006)

    MATH  MathSciNet  Google Scholar 

  31. Rudyak Y.B.: On Thom Spectra, Orientability, and Cobordism. Springer, Berlin (1998)

    MATH  Google Scholar 

  32. Segal G.: Configuration-spaces and iterated loop-spaces. Invent. Math. 21, 213–221 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  33. Segal G.: Categories and cohomology theories. Topology 13, 293–312 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vakil, R.: The moduli space of curves and Gromov–Witten theory. In: Behrend, K., Manetti, M. (eds.) Enumerative Invariants in Algebraic Geometry and String Theory, Lecture Notes in Math., vol. 1947, pp. 143–198. Springer, Berlin (2008)

  35. Zung N.T.: Proper groupoids and momentum maps: linearization, affinity, and convexity. Ann. Sci. École Norm. Sup. (4) 39, 841–869 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Ebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, J., Giansiracusa, J. Pontrjagin–Thom maps and the homology of the moduli stack of stable curves. Math. Ann. 349, 543–575 (2011). https://doi.org/10.1007/s00208-010-0518-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0518-2

Mathematics Subject Classification (2000)

Navigation