Skip to main content
Log in

On the Lyapunov spectrum for rational maps

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the dimension spectrum for Lyapunov exponents for rational maps on the Riemann sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barreira L., Pesin Ya., Schmeling J.: On a general concept of multifractality. Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7, 27–38 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barreira L., Saussol B., Schmeling J.: Distribution of frequencies of digits via multifractal analysis. J. Number Theory 97, 410–438 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Besicovitch A.: On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110, 321–330 (1934)

    Article  MathSciNet  Google Scholar 

  4. Collet P., Lebowitz J., Porzio A.: The dimension spectrum of some dynamical systems. J. Stat. Phys. 47, 609–644 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Denker M., Mauldin R.D., Nitecki Z., Urbański M.: Conformal measures for rational functions revisited. Fund. Math. 157, 161–173 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Denker M., Przytycki F., Urbanski M.: On the transfer operator for rational functions on the Riemann sphere. Ergodic Theory Dynam. Syst. 16, 255–266 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gelfert K., Rams M.: The Lyapunov spectrum of some parabolic systems. Ergodic Theory Dynam. Syst. 29, 919–940 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Graczyk J., Smirnov S.: Non-uniform hyperbolicity in complex dynamics. Invent. Math. 175, 335–415 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Makarov N., Smirnov S.: On “thermodynamics” of rational maps. I. Negative spectrum. Commun. Math. Phys. 211, 705–743 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mañé, R.: The Hausdorff dimension of invariant probabilities of rational maps. In: Dynamical Systems, Valparaiso 1986, pp. 86–117. Lecture Notes in Math. 1331, Springer, 1988

  11. Mauldin, D., Urbański, M. (eds): Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  12. Pesin Y: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. The University of Chicago Press, Chicago (1997)

    Google Scholar 

  13. Pliss V.: On a conjecture due to Smale. Differ. Uravn. 8, 262–268 (1972)

    Google Scholar 

  14. Prado, E.: Teichmüller distance for some polynomial-like maps, preprint, arXiv:math/9601214v1

  15. Przytycki F.: On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions. Bol. Soc. Brasil. Mat. (N. S.) 20, 95–125 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Przytycki F.: Lyapunov characteristic exponents are nonnegative. Proc. Am. Math. Soc. 119, 309–317 (1993)

    MATH  MathSciNet  Google Scholar 

  17. Przytycki F.: Conical limit set and Poincaré exponent for iterations of rational functions. Trans. Am. Math. Soc. 351, 2081–2099 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Przytycki, F., Rivera-Letelier, J.: Nice inducing schemes and the thermodynamics of rational maps, preprint, arXiv:0806.4385v2

  19. Przytycki F., Rivera-Letelier J., Smirnov S.: Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151, 29–63 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Przytycki F., Rivera-Letelier J., Smirnov S.: Equality of pressures for rational functions. Ergodic Theory Dynam. Syst. 24, 891–914 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series 371, Cambridge University Press, 2010

  22. Schmeling J.: On the completeness of multifractal spectra. Ergodic Theory Dynam. Syst. 19, 1595–1616 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Urbański M.: Measures and dimensions in conformal dynamics. Bull. Am. Math. Soc. 40, 281–321 (2003)

    Article  MATH  Google Scholar 

  24. Walters P: An Introduction to Ergodic Theory. Springer, Berlin (1982)

    MATH  Google Scholar 

  25. Weiss H.: The Lyapunov spectrum for conformal expanding maps and axiom-A surface diffeomorphisms. J. Stat. Phys. 95, 615–632 (1999)

    Article  MATH  Google Scholar 

  26. Wijsman R.: Convergence of sequence of convex sets, cones, and functions. II. Trans. Am. Math. Soc. 123, 32–45 (1966)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Gelfert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelfert, K., Przytycki, F. & Rams, M. On the Lyapunov spectrum for rational maps. Math. Ann. 348, 965–1004 (2010). https://doi.org/10.1007/s00208-010-0508-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0508-4

Mathematics Subject Classification (2000)

Navigation