Skip to main content
Log in

Additive polylogarithms and their functional equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \({k[\varepsilon]_{2}:=k[\varepsilon]/(\varepsilon^{2})}\) . The single valued real analytic n-polylogarithm \({\mathcal{L}_{n}: \mathbb{C} \to \mathbb{R}}\) is fundamental in the study of weight n motivic cohomology over a field k, of characteristic 0. In this paper, we extend the construction in Ünver (Algebra Number Theory 3:1–34, 2009) to define additive n-polylogarithms \({li_{n}:k[\varepsilon]_{2}\to k}\) and prove that they satisfy functional equations analogous to those of \({\mathcal{L}_{n}}\). Under a mild hypothesis, we show that these functions descend to an analog of the nth Bloch group \({B_{n}' (k[\varepsilon]_{2})}\) defined by Goncharov (Adv Math 114:197–318, 1995). We hope that these functions will be useful in the study of weight n motivic cohomology over k[ε]2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilinson A.: Height pairing between algebraic cycles. Contemp. Math. 67, 1–24 (1987)

    MathSciNet  Google Scholar 

  2. Beilinson, A., Deligne, P.: Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs. In: Jannsen, U., Kleiman, S., Serre, J.-P. (eds.) Motives, AMS, Proceeding of Symposium in Pure Math., vol. 55, Part 2 (1994)

  3. Beilinson, A., Goncharov, A., Schechtman, V., Varchenko, A.: Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane. Groth. Festschrift, vol. 1, pp. 135–172. Prog. Math. (1990)

  4. Bloch, S., Esnault, H.: The additive dilogarithm. Doc. Math. Extra volume in honor of Kazuya Kato’s fiftieth birthday, pp. 131–155

  5. Bloch S., Esnault H.: An additive version of higher Chow groups. Ann. Sci. École Norm. Sup. 36(3), 463–477 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Cathelineau, J.-L.: λ-structures in algebraic K-theory and cyclic homology. K-Theory 4, 591–606 (1990/1991)

    Google Scholar 

  7. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. Galois groups over \({\mathbb{Q}}\) (Berkeley, CA, 1987), pp. 79–297, Math. Sci. Res. Inst. Publ., 16. Springer, New York (1989)

  8. Deligne P., Goncharov A.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. 38(1), 1–56 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Dupont J.: On polylogarithms. Nagoya Math. J. 114, 1–20 (1989)

    MATH  MathSciNet  Google Scholar 

  10. Gangl H.: Functional equations of higher logarithms. Selecta Math. 9, 361–379 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goncharov A.: Volumes of hyperbolic manifolds and mixed Tate motives. J. Am. Math. Soc. 12(2), 569–618 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goncharov A.: Geometry of configurations, polylogarithms, and motivic cohomology. Adv. Math. 114, 197–318 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goncharov A.: Euclidean scissor congruence groups and mixed Tate motives over dual numbers. Math. Res. Lett. 11, 771–784 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Goodwillie T.G.: Relative algebraic K-theory and cyclic homology. Ann. Math. 124(2), 347–402 (1986)

    Article  MathSciNet  Google Scholar 

  15. Hida, H.: Elementary theory of L-functions and Eisenstein Series. London Math. Soc. Student Texts 26. Cambridge University Press, Cambridge (1993)

  16. Krishna A., Levine M.: Additive higher Chow groups of schemes. J. Reine Angew. Math. 619, 75–140 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Ramakrishnan, D.: Regulators, algebraic cycles and values of L-functions. Contemp. Math. 83, 183–310

  18. Park, J.: Algebraic cycles and additive dilogarithm. Int. Math. Res. Not., 18 (2007)

  19. Rülling K.: The generalized de Rham–Witt complex over a field is a complex of zero cycles. J. Alg. Geom. 16, 109–169 (2007)

    MATH  Google Scholar 

  20. Sydler J.P.: Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien à trois dimensions. Comment. Math. Helv. 40, 43–80 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ünver S.: On the additive dilogarithm. Algebra Number Theory 3(1), 1–34 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wojtkowiak, Z.: The basic structure of polylogarithmic functional equations. In: Lewin, L. (ed.) Structural properties of polylogarithms (Mathematical surveys and monographs, AMS, vol. 37), pp. 205–231 (1991)

  23. Zagier, D.: Special values and functional equations of polylogarithms (Appendix A). In: Lewin, L. (ed.) Structural properties of polylogarithms (Mathematical surveys and monographs, AMS, vol. 37), pp. 377–400 (1991)

  24. Zagier, D.: Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields. Arithmetic Algebraic Geometry. In: van der Geer, G., Oort, F., Steenbrick, J. (eds.) Prog. Math., vol. 89, pp. 391–430. Birkhauser, Boston (1991)

  25. Zhao J.: Remarks on a Hopf algebra for defining motivic cohomology. Duke Math. J. 103(3), 445–458 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhao J.: Motivic cohomology of pairs of simplices. Proc. Lond. Math. Soc. 88(3), 313–354 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Ünver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ünver, S. Additive polylogarithms and their functional equations. Math. Ann. 348, 833–858 (2010). https://doi.org/10.1007/s00208-010-0493-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0493-7

Keywords

Navigation