Skip to main content
Log in

One-radius results for supermedian functions on \({\mathbb R^d}\) , d ≤ 2

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A classical result states that every lower bounded superharmonic function on \({\mathbb{R}^{2}}\) is constant. In this paper the following (stronger) one-circle version is proven. If \({f : \mathbb{R}^{2} \to (-\infty,\infty]}\) is lower semicontinuous, lim inf|x|→∞ f (x)/ ln |x| ≥ 0, and, for every \({x \in \mathbb{R}^{2}}\) , \({1/(2\pi) \int_0^{2\pi} f(x + r(x)e^{it}) \, dt \le f(x)}\) , where \({r : \mathbb{R}^{2} \to (0,\infty)}\) is continuous, \({{\rm sup}_{x \in \mathbb{R}^{2}} (r(x) - |x|) < \infty},\) , and \({{\rm inf}_{x \in \mathbb{R}^{2}} (r(x)-|x|)=-\infty}\) , then f is constant. Moreover, it is shown that, assuming rc| · | + M on \({\mathbb{R}^d}\) , d ≤ 2, and taking averages on \({\{y \in \mathbb{R}^{d} : |y-x| \le r(x)\}}\) , such a result of Liouville type holds for supermedian functions if and only if cc 0, where c 0 = 1, if d = 2, whereas 2.50 < c 0 < 2.51, if d = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. II. Wiley Classics Library. John Wiley & Sons Inc., New York (1989). Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication

  2. Fenton P.C.: On sufficient conditions for harmonicity. Trans. Am. Math. Soc. 253, 139–147 (1979)

    MATH  MathSciNet  Google Scholar 

  3. Hansen, W.: Restricted mean value property and harmonic functions. In Potential theory—ICPT 94 (Kouty, 1994), pp. 67–90. de Gruyter, Berlin (1996)

  4. Hansen W.: A Liouville property for spherical averages in the plane. Math. Ann. 319, 539–551 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hansen W.: Littlewood’s one-circle problem, revisited. Expo. Math. 26(4), 365–374 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Hansen W.: A strong version of Liouville’s theorem. Am. Math. Monthly 115(7), 583–595 (2008)

    MATH  Google Scholar 

  7. Hansen W., Nadirashvili N.: Littlewood’s one circle problem. J. London Math. Soc. (2) 50(2), 349–360 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Hansen W., Nadirashvili N.: Restricted mean value property on \({\mathbb {R}^d}\) , d ≤ 2. Expo. Math. 13(1), 93–95 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Hansen W., Nadirashvili N.: Harmonic functions and averages on shells. J. Anal. Math. 84, 231–241 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heath D.: Functions possessing restricted mean value properties. Proc. Am. Math. Soc. 29, 588–595 (1973)

    MathSciNet  Google Scholar 

  11. Netuka, I., Veselý, J.: Mean value property and harmonic functions. In: Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 430, pp. 359–398. Kluwer Academic Publishers, Dordrecht (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Nikolov.

Additional information

The research of N. Nikolov was partially supported by a CNRS-grant at the Paul Sabatier University, Toulouse. He is indebted to P.J. Thomas for stimulating discussions on the subject.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, W., Nikolov, N. One-radius results for supermedian functions on \({\mathbb R^d}\) , d ≤ 2. Math. Ann. 348, 565–575 (2010). https://doi.org/10.1007/s00208-010-0488-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0488-4

Mathematics Subject Classification (2000)

Navigation