Skip to main content
Log in

The modularity of K3 surfaces with non-symplectic group actions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider complex K3 surfaces with a non-symplectic group acting trivially on the algebraic cycles. Vorontsov and Kondō classified those K3 surfaces with transcendental lattice of minimal rank. The purpose of this note is to study the Galois representations associated to these K3 surfaces. The rank of the transcendental lattices is even and varies from 2 to 20, excluding 8 and 14. We show that these K3 surfaces are dominated by Fermat surfaces, and hence they are all of CM type. We will establish the modularity of the Galois representations associated to them. Also we discuss mirror symmetry for these K3 surfaces in the sense of Dolgachev, and show that a mirror K3 surface exists with one exception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur, J., Clozel, L.: Simple algebras, base change, and the advanced theory of the trace formula. Ann. Math. Stud. 120. University Press, Princeton (1990)

  2. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften 290, 2nd edn. Springer-Verlag (1993)

  3. Dolgachev I.: Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci. 81, 2599–2630 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Inose, H.: Defining equations of singular K3 surfaces and a notion of isogeny. In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 495–502. Kinokuniya Book Store, Tokyo (1978)

  5. Kondō S.: Automorphisms of algebraic K3 surfaces which act trivially on Picard groups. J. Math. Soc. Jpn. 44(1), 75–98 (1992)

    Article  MATH  Google Scholar 

  6. Kumar, A.: K3 Surfaces Associated with Curves of Genus Two, vol. 2008. Int. Math. Res. Notices (2008)

  7. Livné R.: Motivic orthogonal two-dimensional representations of Gal\({({\overline{\mathbb Q}}/{\mathbb Q})}\). Isr. J. Math. 92, 149–156 (1995)

    Article  MATH  Google Scholar 

  8. Machida N., Oguiso K.: K3 surfaces admitting finite non-symplectic group actions. J. Math. Sci. Univ. Tokyo 5(2), 273–297 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Masley M., Montgomery L.: Cyclotomic fields with unique factorization. J. Reine Angew. Math. 286, 248–256 (1976)

    MathSciNet  Google Scholar 

  10. Nikulin V.V.: Integral symmetric bilinear forms and some of their applications. Math. USSR Izvestija 14(1), 103167 (1980)

    Article  MathSciNet  Google Scholar 

  11. Nikulin, V.V.: Finite groups of automorphisms of Kählerian surfaces of type K3. Trudy Moskov. Math. Obshch. 38, 75–137 (1979). (Trans. Moscow Math. Soc. 38, 71–137) (1980)

  12. Oguiso K., Zhang D.-Q.: On Vorontsov’s theorem on K3 surfaces with non-symplectic group-actions. Proc. AMS 128(6), 1571–1580 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schütt M.: CM newforms with rational coefficients. Ramanujan J. 19, 187–205 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schütt M.: K3 surfaces with non-symplectic automorphisms of 2-power order. J. Algebra 323, 206–223 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shioda T.: An explicit algorithm for computing the Picard number of certain algebraic surfaces. Am. J. Math. 108(2), 415–432 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shioda T.: On the Mordell-Weil lattices. Comm. Math. Univ. St. Pauli 39, 211–240 (1990)

    MATH  MathSciNet  Google Scholar 

  17. Tate, J.: Number Theoretic Background. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math. Oregon State Univ. Corvallis, Ore. 1977). Proc. Sympos. Pure Math. 33, Part 2, 3–26. Amer. Math. Soc., Providence (1979)

  18. Vorontsov, S.P.: Automorphisms of even lattices arising in connection with automorphisms of algebraic K3 surfaces (Russian). Vestnik Moskov. Uni. Ser. I mat. Mekh. No. 2, 19–21 (1983)

  19. Weil A.: Numbers of solutions of equations in finite fields. Bull. AMS 55, 497–508 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  20. Weil A.: Jacobi sums as Grossencharaktere. Trans. AMS 73, 487–495 (1952)

    MATH  MathSciNet  Google Scholar 

  21. Zarhin Y.: Hodge groups of K3 surfaces. J. Reine Angew. Math. 341, 193–220 (1983)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schütt.

Additional information

R. Livné was partially supported by an ISF grant. M. Schütt was supported by Deutsche Forschungsgemeinschaft (DFG) under grant Schu 2266/2-2. N. Yui was supported in part by Discovery Grant of the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livné, R., Schütt, M. & Yui, N. The modularity of K3 surfaces with non-symplectic group actions. Math. Ann. 348, 333–355 (2010). https://doi.org/10.1007/s00208-009-0475-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0475-9

Mathematics Subject Classification (2000)

Navigation