Skip to main content
Log in

Neohookean deformations of annuli, existence, uniqueness and radial symmetry

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \({\mathbb {X} = \{x\in \mathbb {R}^2 ; r < |x|<R\}}\) and \({\mathbb {Y} = \{y\in \mathbb {R}^2 ; r_\ast < |y|<R_\ast\}}\) be annuli in the plane. We consider the class \({\fancyscript {F}(\mathbb {X}, \mathbb {Y})}\) of all orientation preserving homeomorphisms \({h :\mathbb {X}\overset{\textnormal{\tiny{onto}}}{\longrightarrow}\mathbb {Y}}\) in the Sobolev space \({{\fancyscript {W}^{1,2}(\mathbb {X}, \mathbb {Y})}}\) which keep the boundary circles in the same order. This means that \({\lim_{|x| \searrow r} |h(x)| =r_\ast}\) and \({\lim_{|x| \nearrow R} |h(x)| =R_\ast}\) . We study the Neohookean energy integral

$$\mathcal {E}[h]= \int\limits_\mathbb {X} |Dh|^2 + \Phi ({\rm det}\, Dh) \quad {\rm for}\, h \in \fancyscript{F} (\mathbb {X} , \mathbb {Y})\quad\quad\quad (1)$$

where \({\Phi \in \fancyscript {C}^\infty (0, \infty)}\) is positive and strictly convex. We assume in addition that the function \({\Psi (z)= {1}/{\ddot{\Phi}(z)}}\) and its derivative extend continuously to [0, ∞), with Ψ(0) = 0. Then we prove:

Theorem 1 The minimum of energy within the class\({\fancyscript F (\mathbb X , \mathbb Y)}\)is attained for a radial map\({h(x)=H(|x|) \frac{x}{|x|}}\). The minimizer is\({\fancyscript {C}^\infty}\) -smooth and is unique up to a rotation of the annuli.

We believe that not only the result but also some novelties in the computation might gain a particular interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman, S.S.: Fundamental mathematical problems in the theory of nonlinear elasticity. University of Maryland, College Park, pp. 35–54 (1975)

  2. Astala K., Iwaniec T., Martin G.J., Onninen J.: Extremal mappings of finite distortion. Proc. Lond. Math. Soc. (3) 91(3), 655–702 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Astala, K., Iwaniec, T., Martin, G.J., Onninen, J.: Schottkys Theorem on Conformal Mappings Between Annuli: A Play of Derivatives and Integrals. Contemporary Mathematics, vol. 455, pp. 35–39. Amer. Math. Soc. (2008)

  4. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1978)

    Article  Google Scholar 

  5. Ball J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinburgh Sect. A 88(3–4), 315–328 (1981)

    MATH  Google Scholar 

  6. Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. Roy. Soc. London Ser. A 306(1496), 557–611 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bauman P., Owen N., Phillips D.: Maximum principles and a priori estimates for a class of problems in nonlinear elasticity. Ann. Inst. H. Poincaré 8, 119–157 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Bauman P., Owen N., Phillips D.: Maximal smoothness of solutions to certain Euler- Lagrange equations from nonlinear elasticity. Proc. R. Soc. Edinburgh 119A, 241–263 (1991)

    MathSciNet  Google Scholar 

  9. Brezis H., Coron J.-M., Lieb E.H.: Harmonic maps with defects. Comm. Math. Phys. 107, 649–705 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Choquet G.: Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. 69, 156–165 (1945)

    MATH  MathSciNet  Google Scholar 

  11. Ciarlet, P.G.: Mathematical elasticity. Three-Dimensional Elasticity, vol. I. Studies in Mathematics and its Applications, 20. North-Holland Publishing Co., Amsterdam (1988)

  12. Conti S., De Lellis C.: Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(3), 521–549 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Duren, P.: Harmonic mappings between planar domains. Cambridge Tracts in Mathematics, vol. 156. Cambridge University Press, Cambridge (2004)

  14. Francfort G., Sivaloganathan J.: On conservation laws and necessary conditions in the calculus of variations. Proc. R. Soc. Edinburgh Sect. A 132(6), 1361–1371 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  16. Hencl S., Koskela P.: Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180(1), 75–95 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hencl S., Koskela P., Onninen J.: A note on extremal mappings of finite distortion. Math. Res. Lett. 12(2–3), 231–237 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Iwaniec T., Koskela P., Onninen J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507–531 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Iwaniec, T., Kovalev, L.V., Onninen, J.: The Nitsche conjecture. Preprint. arXiv:0908.1253

  20. Iwaniec, T., Martin, G.J.: Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs (2001)

  21. Iwaniec, T., Onninen, J.: Deformations of finite conformal energy: existence and removability of singularities. Proc. Lond. Math. Soc. (to appear) doi:10.1112/plms/pdp016

  22. Iwaniec, T., Onninen, J.: n-Harmonic mappings between annuli. Preprint

  23. Iwaniec T., Onninen J.: Hyperelastic deformations of smallest total energy. Arch. Ration. Mech. Anal. no. 3, 927–986 (2009)

    Article  MathSciNet  Google Scholar 

  24. Iwaniec T., Šverák V.: On mappings with integrable dilatation. Proc. Am. Math. Soc. 118(1), 181–188 (1993)

    Article  MATH  Google Scholar 

  25. Kalaj D.: On the Nitsche’s conjecture for harmonic mappings in \({\mathbb {R}^2}\) and \({\mathbb {R}^3}\) . Publ. Inst. Math. (N.S.) 75(89), 139–146 (2004)

    Article  MathSciNet  Google Scholar 

  26. Kneser H.: Lösung der Aufgabe 41. Jahresber. Deutsch. Math.-Verein. 35, 123–124 (1926)

    Google Scholar 

  27. Laugesen R.S.: Injectivity can fail for higher-dimensional harmonic extensions. Complex Var. Theory Appl. 28(4), 357–369 (1996)

    MATH  MathSciNet  Google Scholar 

  28. Lewy H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689–692 (1936)

    Article  MathSciNet  Google Scholar 

  29. Lyzzaik A.: The modulus of the image annuli under univalent harmonic mappings and a conjecture of J.C.C. Nitsche. J. Lond. Math. Soc. 64, 369–384 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Müller S., Spector S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Ration. Mech. Anal. 131(1), 1–66 (1995)

    Article  MATH  Google Scholar 

  31. Nitsche J.C.C.: On the modulus of doubly connected regions under harmonic mappings. Am. Math. Monthly 69, 781–782 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ogden R.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Edinburgh 328A, 567–583 (1972)

    Google Scholar 

  33. Radó T.: Aufgabe 41. Jahresber. Deutsch. Math.-Verein. 35, 49 (1926)

    Google Scholar 

  34. Schoen R., Uhlenbeck K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    MATH  MathSciNet  Google Scholar 

  35. Sivaloganathan J.: Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity. Arch. Ration. Mech. Anal. 96, 97–136 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sivaloganathan J., Spector S.J.: Myriad radial cavitating equilibria in nonlinear elasticity. SIAM J. Appl. Math. 63(4), 1461–1473 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sivaloganathan J., Spector S.J.: Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity. Ann. I. H. Poincaré 25(1), 201–213 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sivaloganathan, J., Spector, S.J.: On the symmetry of energy minimizing deformations in nonlinear elasticity II: comprehensive materials. Arch. Ration. Mech. Anal. (to appear)

  39. Stuart C.A.: Radially symmetric cavitation for hyperelastic materials. Anal. Non Linéaire 2, 33–66 (1985)

    MATH  MathSciNet  Google Scholar 

  40. Weitsman A.: Univalent harmonic mappings of annuli and a conjecture of J.C.C. Nitsche. Isr. J. Math. 124, 327–331 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yan X.: Maximal smoothness for solutions to equilibrium equations in 2D nonlinear elasticity. Proc. Am. Math. Soc. 135(6), 1717–1724 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Iwaniec.

Additional information

Iwaniec was supported by the NSF grants DMS-0301582 and DMS-0800416 and by the Academy of Finland. Onninen was supported by the NSF grant DMS-0701059 and by the Academy of Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwaniec, T., Onninen, J. Neohookean deformations of annuli, existence, uniqueness and radial symmetry. Math. Ann. 348, 35–55 (2010). https://doi.org/10.1007/s00208-009-0469-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0469-7

Mathematics Subject Classification (2000)

Navigation