Skip to main content
Log in

Cohomological stratification of diagram algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The class of cellularly stratified algebras is defined and shown to include large classes of diagram algebras. While the definition is in combinatorial terms, by adding extra structure to Graham and Lehrer’s definition of cellular algebras, various structural properties are established in terms of exact functors and stratifications of derived categories. The stratifications relate ‘large’ algebras such as Brauer algebras to ‘smaller’ ones such as group algebras of symmetric groups. Among the applications are relative equivalences of categories extending those found by Hemmer and Nakano and by Hartmann and Paget, as well as identities between decomposition numbers and cohomology groups of ‘large’ and ‘small’ algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brauer R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38, 854–872 (1937)

    Article  MathSciNet  Google Scholar 

  2. Cline E., Parshall B., Scott L.: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MATH  MathSciNet  Google Scholar 

  3. Cline, E., Parshall, B., Scott, L.: Stratifying endomorphism algebras. Memoir A.M.S. 124 (1996)

  4. Diracca L., Koenig S.: Cohomological reduction by split pairs. J. Pure Appl. Algebra 212(3), 471–485 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dlab, V., Ringel, C.M.: The module theoretic approach to quasi-hereditary algebras. In: Representations of Algebras and Related Topics (Kyoto, 1990). London Math. Soc. Lecture Note Ser. 168, pp. 200–224. Cambridge University Press, Cambridge (1992)

  6. Doran W.F., Wales D.B.: The partition algebra revisited. J. Algebra 231(1), 265–330 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frisk A.: Dlab’s theorem and tilting modules for stratified algebras. J. Algebra 314(2), 507–537 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goebel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. De Gruyter Expositions in Mathematics, vol. 41, xxiv+640 pp. Walter de Gruyter, Berlin (2006)

  9. Graham J.J., Lehrer G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Green, J.A.: Polynomial representations of GL n . Lecture Notes in Mathematics, vol. 830. Springer-Verlag, Berlin (1980)

  11. Happel D.: Reduction techniques for homological conjectures. Tsukuba J. Math. 17(1), 115–130 (1993)

    MATH  MathSciNet  Google Scholar 

  12. Hartmann R., Paget R.: Young modules and filtration multiplicities for Brauer algebras. Math. Z. 254, 333–357 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hemmer D., Nakano D.: Specht filtrations for Hecke algebras of type A. J. Lond. Math. Soc. 69(2), 623–638 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Henke, A., Paget, R.: Brauer algebras with parameter n = 2 acting on tensor space. Algebr. Represent. Theory 11(6), 545–575 (2008)

    Google Scholar 

  15. James, G.D.: Representation Theory of Symmetric Groups. Lecture Notes in Mathematics, vol. 682. Springer, Berlin (1978)

  16. Koenig S.: Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J. Pure Appl. Alg. 73, 211–232 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koenig, S., Xi, C.C.: On the structure of cellular algebras. In: Algebras and Modules II (Geiranger 1996), CMS Conference Proceedings, vol. 24, pp. 365–386. American Mathematical Society (1998)

  18. Koenig S., Xi C.C.: Cellular algebras: inflations and Morita equivalences. J. Lond. Math. Soc. 60(2), 700–722 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koenig S., Xi C.C.: Cellular algebras and quasi-hereditary algebras: a comparison. Elec. Res. Announc. Am. Math. Soc. 5, 71–75 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Koenig S., Xi C.C.: When is a cellular algebra quasi-hereditary. Math. Ann. 315(2), 281–293 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Koenig S., Xi C.C.: A characteristic free approach to Brauer algebras. Trans. Am. Math. Soc. 353, 1489–1505 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Martin P.P.: Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J. Knot Theory Ramif. 3(1), 51–82 (1994)

    Article  MATH  Google Scholar 

  23. Rui H.B.: A criterion on the semisimple Brauer algebras. J. Combin. Theory Ser. A 111(1), 78–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Xi C.C.: Partition algebras are cellular. Compos. Math. 119, 99–109 (1999)

    Article  MATH  Google Scholar 

  25. Xi C.C.: On the quasi-heredity of Birman-Wenzl algebras. Adv. Math. 154(2), 280–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xi, C.C.: On the Finitistic Dimension Conjecture. Advances in Ring Theory, pp. 282–294. World Scientific Publishing, Singapore (2005)

  27. Zimmermann-Huisgen B.: Homological domino effects and the first finitistic dimension conjecture. Invent. Math. 108(2), 369–383 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Koenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, R., Henke, A., Koenig, S. et al. Cohomological stratification of diagram algebras. Math. Ann. 347, 765–804 (2010). https://doi.org/10.1007/s00208-009-0458-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0458-x

Keywords

Navigation