Skip to main content
Log in

On Shintani’s ray class invariant for totally real number fields

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce a ray class invariant \({X(\mathfrak{C})}\) for a totally real field, following Shintani’s work in the real quadratic case. We prove a factorization formula \({X(\mathfrak{C})=X_1(\mathfrak{C})\cdots X_n(\mathfrak{C})}\) where each \({X_i(\mathfrak{C})}\) corresponds to a real place. Although this factorization depends a priori on some choices (especially on a cone decomposition), we can show that it is actually independent of these choices. Finally, we describe the behavior of \({X_i(\mathfrak{C})}\) when the signature of \({\mathfrak{C}}\) at a real place is changed. This last result is also interpreted in terms of the derivatives L′(0, χ) of the L-functions and certain Stark units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arakawa T.: Generalized eta-functions and certain ray class invariants of real quadratic fields. Math. Ann. 260, 475–494 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnes E.W.: On the theory of the multiple gamma function. Trans. Cambridge Philos. Soc. 19, 374–425 (1904)

    Google Scholar 

  3. Kurokawa N., Koyama S.: Multiple sine functions. Forum Math. 15, 839–876 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shintani T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo 23, 393–417 (1976)

    MATH  MathSciNet  Google Scholar 

  5. Shintani T.: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ. Tokyo 24, 167–199 (1977)

    MATH  MathSciNet  Google Scholar 

  6. Shintani, T.: On values at s = 1 of certain L functions of totally real algebraic number fields. In: Algebraic Number Theory, Proceedings of the International Symposium, Kyoto 1976, pp. 201–212, Kinokuniya (1977)

  7. Shintani T.: On certain ray class invariants of real quadratic fields. J. Math. Soc. Jpn. 30, 139–167 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Stark H.: L-functions at s = 1. IV. First derivatives at s = 0. Adv. Math. 35, 197–235 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tangedal B.A.: Continued fractions, special values of the double sine function, and Stark units over real quadratic fields. J. Number Theory 124, 291–313 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tate J.: On Stark’s conjectures on the behavior of L(s, χ) at s = 0. J. Fac. Sci. Univ. Tokyo 28, 963–978 (1981)

    MATH  MathSciNet  Google Scholar 

  11. Tate, J.: Les Conjectures de Stark sur les Fonctions L d’Artin en s = 0. In: Progress in Mathematics, vol. 47. Birkhäuser, Basel (1984)

  12. Yamamoto S.: On Kronecker limit formulas for real quadratic fields. J. Number Theory 128, 426–450 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yoshida, H.: Absolute CM-Periods, Mathematical Surveys and Monographs, vol. 106. AMS, Providence (2003)

  14. Zagier D.: A Kronecker limit formula for real quadratic fields. Math. Ann. 213, 153–184 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, S. On Shintani’s ray class invariant for totally real number fields. Math. Ann. 346, 449–476 (2010). https://doi.org/10.1007/s00208-009-0405-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0405-x

Keywords

Navigation