Skip to main content
Log in

Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that the singularities of a complex valued potential q in the Schrödinger hamiltonian Δ+q can be reconstructed from the linear Born approximation for full scattering data by averaging in the extra variables. We prove that, with this procedure, the accuracy in the reconstruction improves the previously known accuracy obtained from fixed angle or backscattering data. In particular, for \({q \in W^{\alpha,2}}\) for α ≥ 0, in 2D we recover the main singularity of q with an accuracy of one derivative; in 3D the accuracy is \({\epsilon > 1/2}\), increasing with α. This gives a mathematical basis for diffraction tomography. The proof is based on some new estimates for multidimensional bilinear Fourier multipliers of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burridge R., Beylkin G.: On double integrals over spheres. Inverse Probl. 4, 1–10 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Calderón A.P.: Commutators of singular integral operators. Proc. Natl. Acad. Sci. 53, 1092–1099 (1965)

    Article  MATH  Google Scholar 

  3. Calderón A.P.: Cauchy integral on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. 74, 1324–1327 (1977)

    Article  MATH  Google Scholar 

  4. Carleson L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheney M., Rose J.H.: Three dimensional inverse scattering for the wave equation: weak scattering approximation with error estimates. Inverse Probl. 4, 435–447 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coifman R.R., Meyer Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coifman, R.R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires (French). Ann. Inst. Fourier (Grenoble) 28(3), xi, 177–202 (1978)

    Google Scholar 

  8. Colton D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Davies B.: Non unitary scattering and capture. Hilbert space theory. Commun. Math. Phys. 71(3), 277–288 (1980)

    Article  MATH  Google Scholar 

  10. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)

  11. Eskin G., Ralston J.: Inverse backscattering. J. Anal. Math. 58, 177–190 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fefferman C.: Pointwise convergence of Fourier series. Ann. Math. 98, 551–571 (1973)

    Article  MathSciNet  Google Scholar 

  13. Gilbert J.E., Nahmod A.: Boundedness of bilinear operators with nonsmooth symbols. Math. Res. Lett. 7(5–6), 767–778 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Grafakos, L., Torres, R.H.: On multilinear singular integrals of Calderón–Zygmund type. In: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), vol. Extra, pp. 57–91. Publ. Mat. (2002)

  15. Greenleaf A., Uhlmann G.: Recovery of singularities of a potential from singularities of the scattering data. Commun. Math. Phys. 157, 549–572 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Isozaki H., Nakazama H., Uhlmann G.: Inverse scattering problem in nuclear physics—optical model. J. Math. Phys. 45(7), 2613–2632 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jerison D., Kenig C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121, 463–494 (1985)

    Article  MathSciNet  Google Scholar 

  18. Kato T.: Wave operators and similarity for some non selfadjoint operators. Math. Ann. 162, 258–279 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kenig C., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kenig C., Ruiz A., Sogge C.: Uniform Sobolev inequalities and unique continuation for second order constant coefficients differential operators. Duke Math. J. 55, 329–347 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kenig C., Stein E.M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6(1), 1–15 (1999)

    MATH  MathSciNet  Google Scholar 

  22. Lacey M., Thiele C.: L p estimates on the bilinear Hilbert transform for 2 < p < ∞. Ann. Math. 146, 693–724 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lacey M., Thiele C.: On Calderón’s conjecture. Ann. Math. 149(2), 475–496 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mochizuki K.: Eigenfunction expansions associated with the Schrödinger Operator with a complex potential and the Scattering theory. Publ. RIMS Kyoto Univ. Ser. A 4, 419–466 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  25. Muscalu C., Tao T., Thiele C.: Multi-linear operators given by singular multipliers. J. Am. Math. Soc. 15(2), 469–496 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ola P., Päivärinta L., Serov V.: Recovering singularities from backscattering in two dimensions. Commun. Partial Differ. Equ. 26(3–4), 697–715 (2001)

    Article  MATH  Google Scholar 

  27. Päivärinta L., Serov V.: Recovery of jumps and singularities in the multidimensional Schrödinger operator from limited data. Inverse Probl. Imaging 1(3), 525–535 (2007)

    MATH  MathSciNet  Google Scholar 

  28. Päivärinta L., Serov V.: Recovery of singularities of a multidimensional scattering potential. SIAM J. Math. Anal. 29, 697–711 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Päivärinta L., Serov V., Somersalo E.: Reconstruction of singularities of a scattering potential in two dimensions. Adv. Appl. Math. 15, 97–113 (1994)

    Article  MATH  Google Scholar 

  30. Päivärinta L., Somersalo E.: Inversion of discontinuities for the Schrödinger equation in three dimensions. SIAM J. Math. Anal. 22, 480–499 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Reyes J.M.: Inverse backscattering for the Schrödinger equation in 2D. Inverse Probl. 23, 625–643 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Reyes, J.M.: Problema inverso de scattering para la ecuación de Schrödinger: reconstrucción parcial del potencial a partir de datos de retrodispersión en 2D y 3D. Ph.D. thesis, Universidad Autónoma de Madrid (2007). http://www.uam.es/gruposinv/inversos/publicaciones/index.html

  33. Reyes, J.M., Ruiz, A.: Reconstruction of the singularities of a potential from backscattering data in \({\mathbb{R}}\) 2 and \({\mathbb{R}}\) 3 (preprint)

  34. Ruiz A.: Recovery of the singularities of a potential from fixed angle scattering data. Commun. P.D.E. 26(9–10), 1721–1738 (2001)

    Article  MATH  Google Scholar 

  35. Ruiz A., Vargas A.: Partial recovery of a potential from backscattering data. Commun. P.D.E. 30, 67–96 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ruiz A., Vega L.: on local regularity of Schrödinger equations. Int. Math. Res. Notices 1, 13–27 (1993)

    Article  MathSciNet  Google Scholar 

  37. Saito Y.: The principle of limiting absorption for the non selfadjoint Schrödinger operators in R N. Publ. RIMS Kyoto Univ. 9, 397–428 (1974)

    Article  Google Scholar 

  38. Stefanov P., Uhlmann G.: Inverse backscattering for the acoustic equation. SIAM J. Math. Anal. 28, 1191–1204 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Stein, E.M.: Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)

  40. Sun Z., Uhlmann G.: Recovery of singularities for formally determined inverse problems. Commun. Math. Phys. 153, 431–445 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Taylor, M.E.: Tools for PDE. Mathematical Surveys and Monographs, vol. 81. AMS, Providence (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Faraco.

Additional information

J. Barceló, D. Faraco and A. Ruiz were partially supported by the project MMM2005-07652-C02-01 (MICINN, Spain), A. Vargas was supported MTM2007-60952 (MICINN, Spain), D. Faraco and A. Ruiz were partially supported by project Simumat (CAM, Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barceló, J.A., Faraco, D., Ruiz, A. et al. Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers. Math. Ann. 346, 505–544 (2010). https://doi.org/10.1007/s00208-009-0398-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0398-5

Keywords

Navigation