Skip to main content
Log in

Integration theory on the zero sets of polyfold Fredholm sections

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We construct an integration theory for sc-differential forms on oriented branched ep-subgroupoid for which Stokes’ theorem holds true. The construction is compatible with equivalences between ep-groupoids and so gives rise to an integration theory for branched suborbifolds of polyfolds. Examples are the solutions sets of proper oriented Fredholm sections of strong polyfold bundles for which we obtain invariants this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgeois F., Eliashberg Y., Hofer H., Wysocki K., Zehnder E.: Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cieliebak K., Mundeti Riera I., Salamon D.A.: Equivariant moduli problems, branched manifolds, and the Euler class. Topology 42, 641–700 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume, Part II, 560–673 (2000)

  4. Fathi A.: Partitions of unity for countable covers. Am. Math. Mon. 104(8), 720–723 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gromov M.: Pseudoholomorphic curves in symplectic geometry. Invent. Math. 82, 307–347 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Haefliger, A.: Homotopy and integrability, in Manifolds (Amsterdam 1970). Springer Lecture Notes in Math, vol. 197, pp. 133–163 (1971)

  7. Haefliger A.: Groupoïdes d’holonomie et classifants. Astérisque 116, 70–97 (1984)

    MathSciNet  Google Scholar 

  8. Haefliger A.: Groupoids and foliations. Contemp. Math. 282, 83–110 (2001)

    MathSciNet  Google Scholar 

  9. Hofer, H.: A general Fredholm theory and applications, current developments in mathematics. In: Jerison, D., Mazur, B., Mrowka, T., Schmid, W., Stanley, R., Yau, S.T., (eds.) International Press, New York (2006)

  10. Hofer, H.: Polyfolds and a general Fredholm theory. (preprint 2008); arXiv:0809.3753

  11. Hofer H., Wysocki K., Zehnder E.: A general Fredholm theory I: a splicing-based differential geometry. J. Eur. Math. Soc. 9, 841–876 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hofer H., Wysocki K., Zehnder E.: A general Fredholm theory II: implicit function theorems. Geom. Funct. Anal. 19, 206–293 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hofer H., Wysocki K., Zehnder E.: A general Fredholm theory III: Fredholm functors and polyfolds. Geom. Topol. 13, 2279–2387 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hofer, H., Wysocki, K., Zehnder, E.: A general Fredholm theory IV: operations (in preparation)

  15. Hofer, H., Wysocki, K., Zehnder, E.: Connections and determinant bundles for polyfold Fredholm operators (in preparation)

  16. Hofer, H., Wysocki, K., Zehnder, E.: Applications of polyfold theory I: Gromov-Witten theory (in preparation)

  17. Hofer, H., Wysocki, K., Zehnder, E.: Applications of polyfold theory II: the polyfolds of symplectic field theory (in preparation)

  18. Lang S.: Fundamentals of Differential Geometry, vol. 191, 2nd edn. Springer, Heidelberg (1999)

    Google Scholar 

  19. Lang S.: Differential and Riemannian Manifolds, vol. 160, 3rd edn. Springer Graduate Texts, Heidelberg (1995)

    Google Scholar 

  20. McDuff D.: Groupoids, branched manifolds and multisection. J. Symplectic Geom. 4, 259–315 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Moerdijk I.: Orbifolds as groupoids: an introduction. Contemp. Math. 310, 205–222 (2002)

    MathSciNet  Google Scholar 

  22. Moerdijk, I., Mrčun, J.: Introduction to Foliation and Lie Groupoids. Cambridge Stud. Adv. Math., vol. 91 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hofer.

Additional information

H. Hofer’s research was partially supported by NSF grant DMS-0603957. K. Wysocki’s research was partially supported by NSF grant DMS-0606588. E. Zehnder’s research was partially supported by TH-project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, H., Wysocki, K. & Zehnder, E. Integration theory on the zero sets of polyfold Fredholm sections. Math. Ann. 346, 139–198 (2010). https://doi.org/10.1007/s00208-009-0393-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0393-x

Keywords

Navigation