Skip to main content
Log in

Integration of holomorphic Lie algebroids

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that a holomorphic Lie algebroid is integrable if and only if its underlying real Lie algebroid is integrable. Thus the integrability criteria of Crainic–Fernandes (Theorem 4.1 in Crainic, Fernandes in Ann Math 2:157, 2003) do also apply in the holomorphic context without any modification. As a consequence we prove that a holomorphic Poisson manifold is integrable if and only if its real part or imaginary part is integrable as a real Poisson manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyom M.N.: KV-cohomology of Koszul-Vinberg algebroids and Poisson manifolds. Internat. J. Math. 16(9), 1033–1061 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cañez, S.: Private communication

  3. Coste, A., Dazord, P., Weinstein, A.: Groupoï des symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, pp. i–ii, 1–62, Univ. Claude-Bernard, Lyon (1987)

  4. Cattaneo A., Felder G.: Poisson sigma models and symplectic groupoids. Prog. Math. 198, 61–93 (2001)

    MathSciNet  Google Scholar 

  5. Crainic, M.: Generalized complex structures and Lie brackets, arXiv:math/0412097

  6. Crainic M., Fernandes R.L.: Integrability of Lie brackets. Ann. of Math. (2)(157), 575–620 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crainic M., Fernandes R.L.: Integrability of Poisson brackets. J. Differ. Geom. 66, 71–137 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Crainic, M., Fernandes, R.L.: Lectures on integrability of Lie brackets, arXiv:0611259v1

  9. Evens, S., Lu, J.-H., Weinstein, A.: Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford (2) 50, 417–436 (1999) arXiv:dg-ga/9610008v1

    Google Scholar 

  10. Fernandes, R.L.: A note on proper Poisson actions, arXiv:0503147

  11. Fernandes R.L., Vanhaecke P.: Hyperelliptic Prym varieties and integrable systems. Commun. Math. Phys. 221, 169–196 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huebschmann J.: Duality for Lie-Rinehart algebras and the modular class. J. Reine Angew. Math. 510, 103–159 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Kosmann-Schwarzbach Y.: The Lie bialgebroid of a Poisson-Nijenhuis manifold. Lett. Math. Phys. 38(4), 421–428 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kosmann-Schwarzbach Y., Magri F.: Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré Phys. Théor. 53(1), 35–81 (1990)

    MATH  MathSciNet  Google Scholar 

  15. Laurent-Gengoux, C., Stié non, M., Xu, P.: Holomorphic Poisson manifolds and holomorphic Lie algebroids. Int. Math. Res. Not. 2008, 1–46 (2008) [Art. ID rnn 088]

  16. Mackenzie K.C.H., Xu P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2), 415–452 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mackenzie K.C.H., Xu P.: Integration of Lie bialgebroids. Topology 39(3), 445–467 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Magri, F., Morosi, C.: On the reduction theory of the Nijenhuis operators and its applications to Gelfand-Dikiĭ equations. In: Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, vol. II (Torino, 1982), vol. 117, pp. 599–626 (1983)

  19. Magri, F., Morosi, C.: Old and new results on recursion operators: an algebraic approach to KP equation. In: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (Oberwolfach, 1986), pp. 78–96. World Sci. Publishing, Singapore (1987)

  20. Stiénon M., Xu P.: Poisson quasi-Nijenhuis manifolds. Comm. Math. Phys. 27, 709–725 (2007)

    Article  Google Scholar 

  21. Weinstein, A.: The integration problem for complex Lie algebroids. In: Maeda, Y., Ochiai, T., Michor P., Yoshioka, A. (eds.) From Geometry to Quantum Mechanics. In Honor of Hideki Omori. Progress in Mathematics, pp. 93–109. Birkhäuser, New York (2007)

  22. Xu P.: Dirac submanifolds and Poisson involutions. Ann. Sci. Ec. Norm. Sup. 36, 403–430 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Mathieu Stiénon’s research was supported by the European Union through the FP6 Marie Curie R.T.N. ENIGMA (Contract number MRTN-CT-2004-5652). Ping Xu’s research was partially supported by NSF grants DMS-0306665 and DMS-0605725 & NSA grant H98230-06-1-0047.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent-Gengoux, C., Stiénon, M. & Xu, P. Integration of holomorphic Lie algebroids. Math. Ann. 345, 895–923 (2009). https://doi.org/10.1007/s00208-009-0388-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0388-7

Keywords

Navigation