Skip to main content
Log in

Rough blowup solutions to the L 2 critical NLS

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the singularity formation for the cubic focusing L 2-critical nonlinear Schrödinger equation on \({\mathbb{R}^{2}}\) . In a series of recent works, Merle and Raphaël have completely described the so called log–log blowup regime and proven its stability in the energy space H 1. Our aim in this paper is to investigate the stability of this blowup regime under rough perturbations in the direction of developing a theory at the level of the critical space L 2. By blending the Merle, Raphaël techniques with the quantitative I-method developed by Colliander, Keel, Staffilani, Takaoka and Tao for the study of the Cauchy problem for rough data, we obtain the stability of the log–log regime in H s for all s > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bégout P., Vargas A.: Mass concentration phenomena for the L 2-critical nonlinear Schrödinger equation. Trans. Am. Math. Soc. 359(11), 5257–5282 (2007)

    Article  MATH  Google Scholar 

  2. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  3. Bourgain, J.: Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. Int. Math. Res. Notices, no. 5, pp. 253–283 (1998)

  4. Bourgain J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Am. Math. Soc. 12(1), 145–171 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain, J., Wang, W.: Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1–2, 197–215 (1998)

  6. Carles R., Keraani S.: On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The L 2-critical case. Trans. Am. Math. Soc. 359(1), 33–62 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cazenave T., Weissler F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in H s. Nonlinear Anal. 14(10), 807–836 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christ M., Weinstein M.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coifman, R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, xi, 177–202

  10. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9(5–6), 659–682 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Sharp global well-posedness for KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\) . J. Am. Math. Soc. 16(3), 705–749 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}^{3}}\) . Ann. Math (to appear) arXiv:math/0402129

  13. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Resonant decompositions and the I-method for cubic nonlinear Schrödinger equation on \({\mathbb{R}^{2}}\) . Discrete Contin. Dyn. Syst. 21(3), 665–686, ISSN 1078–0947 (2008)

    Google Scholar 

  14. Colliander J., Raynor S., Sulem C., Wright J.D.: Ground state mass concentration in the L 2-critical nonlinear Schrödinger equation below H 1. Math. Res. Lett. 12(2–3), 357–375 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Fibich G., Merle F., Raphaël P.: Numerical proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation. Phys. D 220(1), 1–13 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gidas B., Ni W.M., Nirenberg L.: Symmetry and related properties via the maximum principle . Comm. Math. Phys. 68, 209–243 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ginibre J., Velo G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1), 1–32 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, preprint, arXiv:math/0610266

  19. Keraani S.: On the blow up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal. 235(1), 171–192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kearaani, S., Vargas, A.: A smoothing property for the L 2-critical NLS equations and applications to blowup theory, preprint 2007

  21. Killip, R., Tao, T., Visan, M.: The cubic nonlinear Schrödinger equation in two dimensions with radial data, preprint, arXiv:0707.3188

  22. Killip R., Visan M., Zhang X.: The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Anal. PDE. 1(2), 229–266 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Krieger J., Schlag W.: Non-generic blow-up solutions for the critical focusing NLS in 1-D. J. Eur. Math. Soc. 11(1), 1–125 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kwong M.K.: Uniqueness of positive solutions of Δuuu p =  0 in R n. Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    MATH  Google Scholar 

  26. Merle F., Raphaël P.: Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation. Ann. Math. 161(1), 157–222 (2005)

    Article  MATH  Google Scholar 

  27. Merle F., Raphaël P.: Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13, 591–642 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Merle F., Raphaël P.: On universality of blow up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math. 156, 565–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Merle F., Raphaël P.: Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation. J. Am. Math. Soc. 19(1), 37–90 (2006)

    Article  MATH  Google Scholar 

  30. Merle F., Raphaël P.: Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Comm. Math. Phys. 253(3), 675–704 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Merle F., Raphaël P.: On one blow up point solutions to the critical nonlinear Schrödinger equation. J. Hyperbolic Differ. Equ. 2(4), 919–962 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Merle F., Tsutsumi Y.: L 2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J. Differ. Equ. 84(2), 205–214 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Merle, F., Vega, L.: Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrdinger equation in 2D. Int. Math. Res. Notices 1998, no. 8, 399–425

  34. Planchon F., Raphaël P.: Existence and stability of the log–log blow up dynamics for the L 2 critical nonlinear Schrödinger equation in a domain. Ann. Henri Poincar 8(6), 1177–1219 (2007)

    Article  MATH  Google Scholar 

  35. Raphaël P.: Stability of the log–log bound for blow up solutions to the critical non linear Schrödinger equation. Math. Ann. 331(3), 577–609 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tzirakis N.: Mass concentration phenomenon for the quintic nonlinear Schrödinger equation in one dimension. SIAM J. Math. Anal. 37(6), 1923–1946 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Visan M., Zhang X.: On the blowup for the L 2-critical focusing nonlinear Schrödinger equation in higher dimensions below the energy class. SIAM J. Math. Anal. 39(1), 34–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87, 567–576 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Colliander.

Additional information

J. Colliander is supported in part by N.S.E.R.C. Grant R.G.P.I.N. 250233-07 and P. Raphaël was supported in part by the Agence Nationale de la Recherche, ANR ONDENONLIN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colliander, J., Raphaël, P. Rough blowup solutions to the L 2 critical NLS. Math. Ann. 345, 307–366 (2009). https://doi.org/10.1007/s00208-009-0355-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0355-3

Mathematics Subject Classification (2000)

Navigation