Skip to main content
Log in

Gabor (super)frames with Hermite functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We investigate vector-valued Gabor frames (sometimes called Gabor superframes) based on Hermite functions H n . Let h = (H 0, H 1, . . . , H n ) be the vector of the first n + 1 Hermite functions. We give a complete characterization of all lattices \({\Lambda \subseteq \mathbb{R} ^2}\) such that the Gabor system \({\{ {\rm e}^{2\pi i \lambda _{2} t}{\bf h} (t-\lambda _1): \lambda = (\lambda _1, \lambda _2) \in \Lambda \}}\) is a frame for \({L^2 (\mathbb{R} , \mathbb{C} ^{n+1})}\). As a corollary we obtain sufficient conditions for a single Hermite function to generate a Gabor frame and a new estimate for the lower frame bound. The main tools are growth estimates for the Weierstrass σ-function, a new type of interpolation problem for entire functions on the Bargmann–Fock space, and structural results about vector-valued Gabor frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.I.: Elements of the Theory of Elliptic Functions, p. viii+237. American Mathematical Society, Providence (1990)

  2. Balan, R.: Density and redundancy of the noncoherent Weyl–Heisenberg superframes. In: The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), vol. 247 of Contemp. Math., pp. 29–41. Amer. Math. Soc., Providence (1999)

  3. Balan, R.: Multiplexing of signals using superframes. In: SPIE Wavelets Applications, vol. 4119 of Signal and Image Processing VIII, pp. 118–129 (2000)

  4. Benedetto J.J., Heil C., Walnut D.F.: Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl. 1(4), 355–402 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brekke S., Seip K.: Density theorems for sampling and interpolation in the Bargmann–Fock space. III. Math. Scand. 73(1), 112–126 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Daubechies I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duffin R.J., Schaeffer A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feichtinger H.G., Gröchenig K.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In Gabor analysis and algorithms, pp. 233–266. Birkhäuser Boston, Boston (1998)

  10. Folland, G.: Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122, p. x+277. Princeton University Press, Princeton (1989)

  11. Führ H.: Simultaneous estimates for vector-valued Gabor frames of Hermite functions. Adv. Comput. Math. 29, 357–373 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gabor D.: Theory of communication. J. IEE (London) 93(III), 429–457 (1946)

    Google Scholar 

  13. Gröchenig K.: An uncertainty principle related to the Poisson summation formula. Studia Math. 121(1), 87–104 (1996)

    MATH  MathSciNet  Google Scholar 

  14. Gröchenig, K.: Foundations of Time-frequency Analysis, p. xvi+359. Birkhäuser, Boston (2001)

  15. Gröchenig, K.: Gabor frames without inequalities. Int. Math. Res. Not. IMRN (23):Art. ID rnm111, 21 (2007)

  16. Gröchenig, K.: Weight functions in time-frequency analysis. In: Rodino, L., Wong, M.-W. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-frequency Analysis, vol. 52, pp. 343–366. Fields Institute Comm. (2007)

  17. Gröchenig K., Lyubarskii Yu.: Gabor frames with Hermite functions. C. R. Math. Acad. Sci. Paris 344(3), 157–162 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697):x+94 (2000)

    Google Scholar 

  19. Hartmann, M., Matz, G., Schafhuber, D.: Wireless multicarrier communications via multipulse Gabor Riesz bases. EURASIP J. Appl. Signal Proc. 2006, 1–15 (2006). doi:10.1155/ASP/2006/23818

  20. Hayman W.K.: The local growth of the power series: a survey of the Wiman-Valiron method. Canad. Math. Bull. 17(3), 317–358 (1974)

    MATH  MathSciNet  Google Scholar 

  21. Janssen A.J.E.M.: Signal analytic proofs of two basic results on lattice expansions. Appl. Comput. Harmon. Anal. 1(4), 350–354 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Janssen A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Janssen A.J.E.M.: Some Weyl–Heisenberg frame bound calculations. Indag. Math. 7, 165–182 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Janssen, A.J.E.M.: Zak transforms with few zeros and the tie. In: Advances in Gabor Analysis. Birkhäuser Boston, Boston (2002)

  25. Janssen A.J.E.M., Strohmer T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harm. Anal. 12, 259–267 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lyubarski, Yu.: Frames in the Bargmann space of entire functions. In: Entire and Subharmonic Functions. Adv. Soviet Math., vol. 11, pp. 167–180. Amer. Math. Soc., Providence (1992)

  27. Lyubarskii Yu., Seip K.: Convergence and summability of Gabor expansions at the Nyquist density. J. Fourier Anal. Appl. 5(2–3), 127–157 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rieffel M.A.: Projective modules over higher-dimensional noncommutative tori. Canad. J. Math. 40(2), 257–338 (1988)

    MATH  MathSciNet  Google Scholar 

  29. Seip K., Wallsten R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. II. J. Reine Angew. Math. 429, 107–113 (1992)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlheinz Gröchenig.

Additional information

K. Gröchenig was supported by the Marie-Curie Excellence Grant MEXT-CT 2004-517154.

Yu. Lyubarskii was partially supported by the Research Council of Norway grant 10323200. This research is part of the European Science Foundation Networking Programme “Harmonic and Complex Analysis”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröchenig, K., Lyubarskii, Y. Gabor (super)frames with Hermite functions. Math. Ann. 345, 267–286 (2009). https://doi.org/10.1007/s00208-009-0350-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0350-8

Mathematics Subject Classification (2000)

Navigation