Skip to main content
Log in

-Adic class field theory for regular local rings

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we prove the -adic abelian class field theory for henselian regular local rings of equi-characteristic assuming the surjectivity of Galois symbol maps, which is an -adic variant of a result of Matsumi (Class field theory for \(\mathbb{F}_{q}[\hspace{-1.4pt}[X_{1},\dotsc,X_{n}]\hspace{-1.4pt}]\), preprint, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloch S., Kato K.: p-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math. 63, 107–152 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bloch S., Ogus A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7, 181–202 (1974)

    MATH  MathSciNet  Google Scholar 

  3. Colliot-Thélène, J.-L., Hoobler, R. T., Kahn, B.: The Bloch–Ogus–Gabber theorem. In: Algebraic K-theory. Toronto, 1996, (Fields Inst. Commun. 16), pp. 31–94. American Mathematical Society, Providence (1997)

  4. Fujiwara K.: Theory of tubular neibourhood in etale topology. Duke Math. J. 80, 15–56 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Grothendieck A., Artin M., Verdier J.-L., with Deligne P., Saint-Donat B.: Théorie des Topos et Cohomologie Étale des Schémas, Tome 3. Lecture Notes in Mathematics, vol. 305. Springer, Berlin (1973)

    Google Scholar 

  6. Grothendieck A., with Bucur I., Houzel C., Illusie L., Jouanolou J.-P., Serre J.-P.: Cohomologie -adique et Fonctions L. Lecture Notes in Mathematics, vol. 589. Springer, Berlin (1977)

    Google Scholar 

  7. Illusie, L.: Groupe de travail sur les travaux de Gabber en cohomologie étale. http://www.math.polytechnique.fr/~laszlo/gdtgabber/gabberluc.pdf

  8. Kato K.: A generalization of local class field theory using K-groups. II. J. Fac. Sci. Univ. of Tokyo, Sec. IA 27, 602–683 (1980)

    Google Scholar 

  9. Kato, K., Saito, S.: Global class field theory of arithmetic schemes. In: Applications of algebraic K-theory to algebraic geometry and number theory, Part I, Boulder, Colo., 1983, (Contemp. Math. 55), pp. 255–331. American Mathematical Society, Providence (1986)

  10. Matsumi K.: A Hasse principle for three-dimensional complete local rings of positive characteristic. J. Reine Angew. Math. 542, 113–121 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Matsumi P.: Class field theory for \({\mathbb {F}_{q}[\hspace{-1.4pt}[{X_1, X_2, X_3}}]\hspace{-1.4pt}]\). J. Math. Sci. Univ. Tokyo 9, 689–746 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Matsumi, P.: Class field theory for \({\mathbb {F}_{q}[\hspace{-1.4pt}[{X_1, \ldots, X_n}}]\hspace{-1.4pt}]\), preprint (2002)

  13. Merkur’ev A.S., Suslin A.A.: K-cohomology of Severi–Brauer varieties and the norm residue homomorphism. Math. USSR Izv. 21, 307–341 (1983)

    Article  Google Scholar 

  14. Merkur’ev A.S., Suslin A.A.: On the norm residue homomorphism of degree 3. Math. USSR Izv. 36, 349–367 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Orgogozo, F.: Le théorème d’uniformisation de Ofer Gabber et un survol de quelques conséquences: finitude, Lefschetz affine et pureté. http://www.math.polytechnique.fr/~orgogozo/articles/trame.pdf

  16. Panin I.A.: The equi-characteristic case of the Gersten conjecture. Proc. Steklov Inst. Math. 241, 154–163 (2003)

    MathSciNet  Google Scholar 

  17. Pilloni, V., Stroh, B.: Le théorème de Lefschetz affine, d’après Gabber. Preprint (2006)

  18. Raskind, W.: Abelian class field theory of arithmetic schemes. In: K-theory and algebraic geometry: connections with quadratic forms and division algebras. Santa Barbara, 1992, (Proc. Sympos. Pure Math., 58, Part 1), pp. 85–187. American Mathematical Society, Providence (1995)

  19. Riou, J.: Dualité (d’après Ofer Gabber). preprint http://www.math.jussieu.fr/~riou/doc/dualite.pdf

  20. Saito, S.: Class field theory for two-dimensional local rings. In: Galois Representations and Arithmetic Algebraic Geometry. Kyoto, 1985/Tokyo, 1986, (Adv. Stud. in Pure Math. 12), pp. 343–373. North-Holland, Amsterdam (1987)

  21. Serre J.-P.: Cohomologie Galoisienne. 5e éd. Lecture Notes in Mathematics, vol. 5. Springer, Berlin (1992)

    Google Scholar 

  22. Shiho A.: A note on class field theory for two-dimensional local rings. Compos. Math. 124, 305–340 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tate J.: Relations between K 2 and Galois cohomology. Invent. Math. 36, 257–274 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. Voevodsky V.: Motivic cohomology with \({\mathbb {Z}/2}\)-coefficients. Inst. Hautes Études Sci. Publ. Math. 98, 59–104 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanetomo Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, K. -Adic class field theory for regular local rings. Math. Ann. 344, 341–352 (2009). https://doi.org/10.1007/s00208-008-0309-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0309-1

Mathematics Subject Classification (2000)

Navigation