Skip to main content
Log in

Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that Lipschitz mappings are dense in the Newtonian–Sobolev classes N 1,p(X, Y) of mappings from spaces X supporting p-Poincaré inequalities into a finite Lipschitz polyhedron Y if and only if Y is [p]-connected, π 1(Y) = π 2(Y) = · · · = π [p](Y) = 0, where [p] is the largest integer less than or equal to p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L.: Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17, 439–478 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Béthuel F.: A characterisation of maps in H 1(B 3, S 2), which can be approximated by smooth maps. Ann. I. H. P. Analyse Non Linéaire 7, 269–286 (1990)

    MATH  Google Scholar 

  3. Béthuel F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153–206 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Béthuel, F., Coron, J.-M., Demengel, F., Hélein, H.: A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. In: Nematics (Orsay 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 332, pp. 15–23. Kluwer, Dordrecht (1991)

  5. Béthuel F., Zheng X.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Björn, A., Björn, J., Shanmugalingam, N.: Quasiontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces. Houston J. Math. (2008) (to appear)

  7. Bourdon M., Pajot H.: Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. Proc. Am. Math. Soc. 127, 2315–2324 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brézis H., Li Y.: Topology and Sobolev spaces. J. Funct. Anal. 183, 321–369 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brézis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1, 197–263 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brézis H., Nirenberg L.: Degree theory and BMO. II. Compact manifolds with boundaries. With an appendix by the authors and Petru Mironescu. Selecta Math. (N.S.) 2, 309–368 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Capogna L., Lin F.-H.: Legendrian energy minimizers. I. Heisenberg group target. Calc. Var. Partial Differ. Equ. 12, 145–171 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Coron J.-M., Gulliver R.: Minimizing p-harmonic maps into spheres. J. Reine Angew. Math. 401, 82–100 (1989)

    MATH  MathSciNet  Google Scholar 

  14. Demengel F.: Une caractérisation des applications de W 1,p(B N,S 1) qui peuvent être approchées par des fonctions régulières. C. R. Acad. Sci. Paris 310(Série I), 553–557 (1990)

    MATH  MathSciNet  Google Scholar 

  15. Eells J., Fuglede B.: Harmonic maps between Riemannian polyhedra. Cambridge Tracts in Mathematics, vol. 142. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  16. Eells J., Lemaire L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Escobedo M.: Some remarks on the density of regular mappings in Sobolev classes of S M-valued functions. Rev. Mat. Univ. Complut. Madrid 1, 127–144 (1988)

    MATH  MathSciNet  Google Scholar 

  18. Franchi B., Hajłasz P., Koskela P.: Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier (Grenoble) 49, 1903–1924 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Gromov M., Schoen R.: Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76, 165–246 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hajłasz P.: Equivalent statement of the Poincaré conjecture. Annali. Mat. Pura Appl. 167, 25–31 (1994)

    Article  MATH  Google Scholar 

  21. Hajłasz P.: Approximation of Sobolev mappings. Nonlinear Anal 22, 1579–1591 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hajłasz P.: Sobolev spaces on an arbitrary metric space. Potential Anal 5, 403–415 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002, pp. 173–218. Contemp. Math., vol. 338. American Mathematical Society, Providence (2003)

  24. Hajłasz P.: Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target. Geom. Funct. Anal. 17, 435–467 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hajłasz P., Iwaniec T., Malý J., Onninen J.: Weakly differentiable mappings between manifolds. Mem. Am. Math. Soc. 192(899), 1–72 (2008)

    Google Scholar 

  26. Hajłasz P., Koskela P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), 1–101 (2000)

    Google Scholar 

  27. Hang F.: Density problems for W 1,1(M, N). Commun. Pure Appl. Math. 55, 937–947 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hang F.: On the weak limits of smooth maps for the Dirichlet energy between manifolds. Comm. Anal. Geom. 13, 929–938 (2005)

    MATH  MathSciNet  Google Scholar 

  29. Hang F., Lin F.: Topology of Sobolev mappings. Math. Res. Lett. 8, 321–330 (2001)

    MATH  MathSciNet  Google Scholar 

  30. Hang F., Lin F.: Topology of Sobolev mappings II. Acta Math. 191, 55–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hang F., Lin F.: Topology of Sobolev mappings III. Comm. Pure Appl. Math. 56, 1383–1415 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hanson B., Heinonen J.: An n-dimensional space that admits a Poincaré inequality but has no manifold points. Proc. Am. Math. Soc. 128, 3379–3390 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Heinonen J., Koskela P., Shanmugalingam N., Tyson J.T.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Helein F.: Approximation of Sobolev maps between an open set and Euclidean sphere, boundary data, and singularities. Math. Ann. 285, 125–140 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  36. Isobe T.: Characterization of the strong closure of C (B 4,S 2) in W 1,p(B 4, S 2) (\({\frac{16}{5}\leq p < 4}\)). J. Math. Anal. Appl. 190, 361–372 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Jost J.: Equilibrium maps between metric spaces. Calc. Var. 2, 173–205 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jost J.: Generalized Dirichlet forms and harmonic maps. Calc. Var. 5, 1–19 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jost, J.: Nonlinear Dirichlet forms. In: New directions in Dirichlet forms. AMS/IP Stud. Adv. Math., vol. 8, pp. 1–47. American Mathematical Society, Providence (1998)

  40. Jost J., Zuo K.: Harmonic maps into Bruhat–Tits buildings and factorizations of p-adically unbounded representations of π 1 of algebraic varieties. I. J. Algebraic Geom. 9, 1–42 (2000)

    MATH  MathSciNet  Google Scholar 

  41. Keith S., Zhong X.: The Poincaré inequality is an open ended condition. Ann. Math 167, 575–599 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Korevaar N.J., Schoen R.M.: Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1, 561–659 (1993)

    MATH  MathSciNet  Google Scholar 

  43. Kronz M.: Some function spaces on spaces of homogeneous type. Manuscripta Math. 106, 219–248 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Laakso T.J.: Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaréé inequality. Geom. Funct. Anal. 10, 111–123 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Laakso, T.J.: Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality. GAFA 10 (2000). Erratum to: Geom. Funct. Anal. 12, 650 (2002)

    Google Scholar 

  46. Lee J.R., Naor A.: Extending Lipschitz functions via random metric partitions. Inventiones Math. 160, 59–95 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Pakzad M.R.: Weak density of smooth maps in W 1,1(M, N) for non-abelian π1(N). Ann. Glob. Anal. Geom. 23, 1–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Pakzad M.R., Rivière T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13, 223–257 (2003)

    MATH  MathSciNet  Google Scholar 

  49. Rushing T.B.: Topological Embeddings, Pure and Applied Mathematics, vol. 52. Academic press, New York (1973)

    Google Scholar 

  50. Reshetnyak, Yu.G.: Sobolev classes of functions with values in a metric space. (Russian) Sibirsk. Mat. Zh. 38, 657–675 (1997); translation in Siberian Math. J. 38, 567–583 (1997)

  51. Shanmugalingam N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 243–279 (2000)

    MATH  MathSciNet  Google Scholar 

  52. Schoen R., Uhlenbeck K.: The Dirichlet problem for harmonic maps. J. Differ. Geom. 18, 153–268 (1983)

    Google Scholar 

  53. Schoen, R., Uhlenbeck, K.: Approximation theorems for Sobolev mappings (unpublished manuscript)

  54. Serbinowski T.: Boundary regularity of harmonic maps to nonpositively curved metric spaces. Comm. Anal. Geom. 2, 139–153 (1994)

    MATH  MathSciNet  Google Scholar 

  55. Taheri A.: Local minimizers and quasiconvexity—the impact of topology. Arch. Ration. Mech. Anal. 176, 363–414 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  56. Troyanov, M.: Approximately Lipschitz mappings and Sobolev mappings between metric spaces. In: Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999), pp. 585–594. Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk (2000)

  57. White B.: Infima of energy functionals in homotopy classes of mappings. J. Differ. Geom. 23, 127–142 (1986)

    MATH  Google Scholar 

  58. White B.: Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math. 160, 1–17 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ziemer W.: Weakly Differentiable Functions, Graduate Texts in Mathematics, vol. 120. Springer, Heidelberg (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Hajłasz.

Additional information

This work was supported by the NSF grant DMS-0500966.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajłasz, P. Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces. Math. Ann. 343, 801–823 (2009). https://doi.org/10.1007/s00208-008-0291-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0291-7

Mathematics Subject Classification (2000)

Navigation