Skip to main content
Log in

On the vanishing viscosity limit in a disk

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We say that a solution of the Navier–Stokes equations converges in the vanishing viscosity limit to a solution of the Euler equations if their velocities converge in the energy (L 2) norm uniformly in time as the viscosity ν vanishes. We show that a necessary and sufficient condition for the vanishing viscosity limit to hold in a disk is that the space–time energy density of the solution to the Navier–Stokes equations in a boundary layer of width proportional to ν vanish with ν, and that one need only consider spatial variations whose frequencies in the radial or tangential direction lie in a band centered around 1/ν.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batcho P.F., Karniadakis G.E.: Generalized Stokes eigenfunctions: a new trial basis for the solution of incompressible Navier–Stokes equations. J. Comput. Phys. 115(1), 121–146 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bowman F.: Introduction to Bessel Functions. Dover, New York (1958)

    MATH  Google Scholar 

  3. Cheng, W., Wang, X.: A discrete Kato type theorem on inviscid limit of Navier–Stokes flow. J. Math. Phys. 48(6) (2007)

  4. Elbert Á.: Concavity of the zeros of Bessel functions. Stud. Sci. Math. Hungar. 12(1–2), 81–88 (1980, 1977)

    MathSciNet  Google Scholar 

  5. Elbert Á., Laforgia A.: On the square of the zeros of Bessel functions. SIAM J. Math. Anal. 15(1), 206–212 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on nonlinear partial differential equations (Berkeley, 1983), vol. 2, pp. 85–98. Math. Sci. Res. Inst. Publ. Springer, New York (1984)

  7. Kelliher, J.P.: Vanishing viscosity and the accumulation of vorticity on the boundary. Commun. Math. Sci. (to appear)

  8. Kelliher J.P.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56(4), 1711–1721 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koch H.: Transport and instability for perfect fluids. Math. Ann. 323(3), 491–523 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Laforgia A., Muldoon M.E.: Monotonicity and concavity properties of zeros of Bessel functions. J. Math. Anal. Appl. 98(2), 470–477 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee D.-S., Rummler B.: The eigenfunctions of the Stokes operator in special domains. III. ZAMM Z. Angew. Math. Mech. 82(6), 399–407 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lombardo M.C., Caflisch R.E., Sammartino M.: Asymptotic analysis of the linearized Navier–Stokes equation on an exterior circular domain: explicit solution and the zero viscosity limit. Comm. Partial Differ. Equ. 26(1-2), 335–354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rummler B.: The eigenfunctions of the Stokes operator in special domains. II. Z. Angew. Math. Mech. 77(9), 669–675 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence. Theory and numerical analysis, Reprint of the 1984 edn. (2001)

  15. Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(3–4):807–828 (1998, 1997); Dedicated to Ennio De Giorgi

    Google Scholar 

  16. Wang, X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J., 50(Special Issue):223–241 (2001); Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, 2000)

  17. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995); Reprint of the 2nd edn. (1944)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Kelliher.

Additional information

The author was supported in part by NSF grant DMS-0705586 during the period of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelliher, J.P. On the vanishing viscosity limit in a disk. Math. Ann. 343, 701–726 (2009). https://doi.org/10.1007/s00208-008-0287-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0287-3

Mathematics Subject Classification (2000)

Navigation