Skip to main content
Log in

Intersection homology Künneth theorems

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Cohen, Goresky, and Ji showed that there is a Künneth theorem relating the intersection homology groups \({I^{\bar p}H_*(X\times Y)}\) to \({I^{\bar p}H_*(X)}\) and \({I^{\bar p}H_*(Y)}\) , provided that the perversity \({\bar p}\) satisfies rather strict conditions. We consider biperversities and prove that there is a Künneth theorem relating \({I^{\bar p,\bar q}H_*(X\times Y)}\) to \({I^{\bar p}H_*(X)}\) and \({I^{\bar q}H_*(Y)}\) for all choices of \({\bar p}\) and \({\bar q}\) . Furthermore, we prove that the Künneth theorem still holds when the biperversity p, q is “loosened” a little, and using this we recover the Künneth theorem of Cohen–Goresky–Ji.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banagl M.: Topological Invariants of Stratified Spaces, Springer Monographs in Mathematics. Springer, New York (2006)

    Google Scholar 

  2. Borel, A.: Introduction to middle intersection cohomology and perverse sheaves. Algebraic groups and their generalizations: classical methods. In: Proceedings of Symposium on Pure Mathematics, University Park, PA, 1991, vol. 56, Part 1, pp. 25–52. American Mathmatical Society, Providence (1994)

  3. Cappell S.E., Shaneson J.L.: Singular spaces, characteristic classes, and intersection homology. Annal. Math. 134, 325–374 (1991)

    Article  MathSciNet  Google Scholar 

  4. Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace Operator. In: Proceedings of Symposium on Pure Mathematics, University of Hawaii, Honolulu, 1979, vol. 36, pp. 91–146. American Mathematical Society, Providence (1980)

  5. Cohen D.C., Goresky M., Ji L.: On the Künneth formula for intersection cohomology. Trans. Am. Math. Soc. 333, 63–69 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Friedman, G.: Intersection homology and poincaré duality on homotopically stratified spaces (submitted)

  7. Friedman, G.: Intersection homology of stratified fibrations and neighborhoods. Adv. Math. (to appear). http://arxiv.org/abs/math.GT/0701112

  8. Friedman, G.: On the chain-level intersection pairing for PL pseudomanifolds (submitted). http://arxiv.org/abs/0808.1749

  9. Friedman G.: Stratified fibrations and the intersection homology of the regular neighborhoods of bottom strata. Topol. Appl. 134, 69–109 (2003)

    Article  MATH  Google Scholar 

  10. Friedman G.: Superperverse intersection cohomology: stratification (in)dependence. Math. Z. 252, 49–70 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friedman G.: Singular chain intersection homology for traditional and super-perversities. Trans. Am. Math. Soc. 359, 1977–2019 (2007)

    Article  MATH  Google Scholar 

  12. Goresky M., MacPherson R.: Intersection homology theory. Topology 19, 135–162 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goresky M., MacPherson R.: Intersection homology II. Invent. Math. 72, 77–129 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goresky M., Siegel P.: Linking pairings on singular spaces. Comment. Math. Helvetici 58, 96–110 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Habegger N., Saper L.: Intersection cohomology of cs-spaces and Zeeman’s filtration. Invent. Math. 105, 247–272 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. King H.C.: Topological invariance of intersection homology without sheaves. Topol. Appl. 20, 149–160 (1985)

    Article  MATH  Google Scholar 

  17. Kirwan F., Woolf J.: An introduction to intersection homology theory. Second edition. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  18. Kleiman, S.: The development of intersection homology theory, A Century of Mathematics in America Part II. Hist. Math., vol. 2, pp. 543–585. American Mathematical Society, Providence (1989)

  19. Lang S.: Algebra: Revised, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  20. McClure J.E.: On the chain-level intersection pairing for PL manifolds. Geom. Topol. 10, 1391–1424 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Munkres J.R.: Elements of algebraic topology. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  22. Quinn, F.: Intrinsic skeleta and intersection homology of weakly stratified sets, Geometry and topology (Athens, GA, 1985), Lecture Notes in Pure and Applied Mathematics, vol. 105, pp. 225–241. Dekker, New York (1987)

  23. Saralegi-Aranguren M.E.: De Rham intersection cohomology for general perversities. Illinois J. Math. 49(3), 737–758 (2005, electronic)

    Google Scholar 

  24. Siegel P.H.: Witt spaces: a geometric cycle theory for KO-homology at odd primes. Am. J. Math. 110, 571–592 (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, G. Intersection homology Künneth theorems. Math. Ann. 343, 371–395 (2009). https://doi.org/10.1007/s00208-008-0275-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0275-7

Mathematics Subject Classification (2000)

Navigation