Advertisement

Mathematische Annalen

, Volume 342, Issue 4, pp 923–949 | Cite as

The mapping class group and the Meyer function for plane curves

  • Yusuke KunoEmail author
Article

Abstract

For each d ≥ 2, the mapping class group for plane curves of degree d will be defined and it is proved that there exists uniquely the Meyer function on this group. In the case of d = 4, using our Meyer function, we can define the local signature for four-dimensional fiber spaces whose general fibers are non-hyperelliptic compact Riemann surfaces of genus 3. Some computations of our local signature will be given.

Mathematics Subject Classification (2000)

57N13 14D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashikaga, T., Endo, H.: Various aspects of degenerate families of Riemann surfaces, SUGAKU EXPOSITIONS, vol. 19, Number 2 (2006)Google Scholar
  2. 2.
    Ashikaga T., Konno K.: Global and local properties of pencils of algebraic curves, algebraic geometry 2000 azumino. Adv. Stud. Pure Math. 36, 1–49 (2000)MathSciNetGoogle Scholar
  3. 3.
    Birman, J., Hilden, H.: On mapping class groups of closed surfaces as covering spaces. Advances in the Theory of Riemann Surfaces. Ann. Math. Stud., vol. 66, pp. 81–115. Princeton University Press, New Jersey (1971)Google Scholar
  4. 4.
    Barth, W. Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces, 2nd enlarged edn. Springer, New York (2003)Google Scholar
  5. 5.
    Cohen F.R.: Homology of mapping class groups for surfaces of low genus. Contemp. Math. 58, 21–30 (1987)Google Scholar
  6. 6.
    Dimca A.: Singularities and Topology of Hypersurfaces. Springer, New York (1992)zbMATHGoogle Scholar
  7. 7.
    Endo H.: Meyer’s signature cocycle and hyperelliptic fibrations. Math. Ann. 316, 237–257 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gelfand I.M., Kapranov M.M., Zelevinsky A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Basel (1994)zbMATHGoogle Scholar
  9. 9.
    Kawazumi N.: On the homotopy type of the moduli space of n-point sets of \({\mathbb{P}^1}\). J. Fac. Sci. Univ. Tokyo Ser. IA 37, 263–287 (1990)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lamotke K.: The topology of complex projective varieties after S. Lefschetz. Topology 20, 15–51 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Matsumoto, Y.: Lefschetz fibrations of genus two—a topological approach. In: Proceedings of the 37th Taniguchi Symposium on “Topology and Teichmüller Spaces”, World Scientific, Singapore, pp. 123–148 (1996)Google Scholar
  12. 12.
    Meyer W.: Die Signatur von Flächenbündeln. Math. Ann. 201, 239–264 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Morifuji T.: On Meyer’s function of hyperelliptic mapping class groups. J. Math. Soc. Jpn. 55, 117–129 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nag S.: The Complex Analytic Theory of Teichmüller Spaces. Wiley-Interscience, New York (1988)zbMATHGoogle Scholar
  15. 15.
    Yoshikawa, K.: A local signature for generic 1-parameter deformation germs of a complex curve. In: Algebraic Geometry and Topology of Degenerations, Coverings and Singularities 2000, pp. 188–200 (in Japanese) (2000)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations