Skip to main content
Log in

Weighted Poincaré inequality and heat kernel estimates for finite range jump processes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

It is well-known that there is a deep interplay between analysis and probability theory. For example, for a Markovian infinitesimal generator \({\mathcal{L}}\) , the transition density function p(t, x, y) of the Markov process associated with \({\mathcal{L}}\) (if it exists) is the fundamental solution (or heat kernel) of \({\mathcal{L}}\) . A fundamental problem in analysis and in probability theory is to obtain sharp estimates of p(t, x, y). In this paper, we consider a class of non-local (integro-differential) operators \({\mathcal{L}}\) on \({\mathbb{R}^d}\) of the form

$$\mathcal{L}u(x) = \lim\limits_{{\varepsilon \downarrow 0}} \int\limits_{\{y\in \mathbb {R}^d: \, |y-x| > \varepsilon\}} (u(y)-u(x)) J(x, y) dy,$$

where \({\displaystyle J(x, y)= \frac{c (x, y)}{|x-y|^{d+\alpha}} {\bf 1}_{\{|x-y| \leq \kappa\}}}\) for some constant \({\kappa > 0}\) and a measurable symmetric function c(x, y) that is bounded between two positive constants. Associated with such a non-local operator \({\mathcal{L}}\) is an \({\mathbb{R}^d}\) -valued symmetric jump process of finite range with jumping kernel J(x, y). We establish sharp two-sided heat kernel estimate and derive parabolic Harnack principle for them. Along the way, some new heat kernel estimates are obtained for more general finite range jump processes that were studied in (Barlow et al. in Trans Am Math Soc, 2008). One of our key tools is a new form of weighted Poincaré inequality of fractional order, which corresponds to the one established by Jerison in (Duke Math J 53(2):503–523, 1986) for differential operators. Using Meyer’s construction of adding new jumps, we also obtain various a priori estimates such as Hölder continuity estimates for parabolic functions of jump processes (not necessarily of finite range) where only a very mild integrability condition is assumed for large jumps. To establish these results, we employ methods from both probability theory and analysis extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. (to appear)

  2. Barlow, M.T., Bass, R.F., Kumagai, T.: Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. Math. Z. (to appear)

  3. Barlow, M.T., Grigor’yan, A., Kumagai, T.: Heat kernel upper bounds for jump processes. J. Reine Angew. Math. (to appear)

  4. Bass R.F., Levin D.A.: Transition probabilities for symmetric jump processes. Trans. Am. Math. Soc. 354, 2933–2953 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertoin J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Blumenthal R.M., Getoor R.K.: Markov Processes and Potential Theory. Academic Press, Reading (1968)

    MATH  Google Scholar 

  7. Caffarelli L.A., Salsa S., Silvestre L.: Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171(1), 425–461 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carlen E.A., Kusuoka S., Stroock D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Prob. Stat. 23, 245–287 (1987)

    MathSciNet  Google Scholar 

  9. Chen Z.-Q.: Gaugeability and conditional gaugeability. Trans. Am. Math. Soc. 354, 4639–4679 (2002)

    Article  MATH  Google Scholar 

  10. Chen, Z.-Q., Kim, P., Kumagai, T.: Notes on heat kernel estimates and parabolic Harnack inequality for jump processes, in preparation

  11. Chen Z.-Q., Kumagai T.: Heat kernel estimates for stable-like processes on d-sets. Stoch. Process Appl. 108, 27–62 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen Z.-Q., Kumagai T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Prob. Theory Relat. Fields 140, 277–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Z.-Q., Rohde, S.: SLE driven by symmetric stable processes. Preprint (2007)

  14. Fabes E.B., Stroock D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal. 96(4), 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fukushima M., Oshima Y., Takeda M.: Dirichlet forms and symmetric Markov processes. de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  16. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  17. Grzywny, T., Ryznar, M.: Estimates of Green function for some perturbations of fractional Laplacian. Illinois J. Math. (to appear)

  18. Hu J., Kumagai T.: Nash-type inequalities and heat kernels for non-local Dirichlet forms. Kyushu J. Math. 60, 245–265 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hurst S.R., Platen E., Rachev S.T.: Option pricing for a logstable asset price model. Math. Comput. Model. 29, 105–119 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ikeda N., Watanabe S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Publishing Co., Amsterdam (1989)

    MATH  Google Scholar 

  21. Janicki A., Weron A.: Simulation and Chaotic Behavior of α-Stable Processes. Dekker, New York (1994)

    Google Scholar 

  22. Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53(2), 503–523 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Diff. Equat. (to appear)

  24. Kim P., Song R.: Potential theory of truncated stable processes. Math. Z. 256(1), 139–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kim P., Song R.: Boundary behavior of harmonic functions for truncated stable processes. J. Theor. Prob. 21, 287–321 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Klafter J., Shlesinger M.F., Zumofen G.: Beyond Brownian motion. Phys. Today 49, 33–39 (1996)

    Article  Google Scholar 

  27. Kolokoltsov V.: Symmetric stable laws and stable-like jump-diffusions. Proc. Lond. Math. Soc. 80, 725–768 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Matacz A.: Financial modeling and option theory with the truncated Lévy process. Int. J. Theor. Appl. Finance 3(1), 143–160 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Saloff-Coste L.: Aspects of Sobolev-type Inequalities. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  30. Saloff-Coste L., Stroock D.W.: Opérateurs uniformément sous-elliptiques sur les groupes de Lie. J. Funct. Anal. 98(1), 97–121 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Silvestre L.: Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ. Math. J. 55, 1155–1174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Takeda M., Tsuchida K.: Criticality of generalized Schrödinger operators and differentiability of spectral functions. Adv. Stud. Pure Math. 41, 333–350 (2004)

    MathSciNet  Google Scholar 

  33. Takeda M., Tsuchida K.: Differentiability of spectral functions for symmetric α-stable processes. Trans. Am. Math. Soc. 359, 4031–4054 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tsuchida K.: Differentiability of spectral functions for relativistic α-stable processes with application to large deviations. Potential Anal. 28(1), 17–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panki Kim.

Additional information

Z.-Q. Chen was partially supported by NSF Grant DMS-06000206. P. Kim was partially supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-C00037). T. Kumagai was partially supported by the Grant-in-Aid for Scientific Research (B) 18340027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ZQ., Kim, P. & Kumagai, T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342, 833–883 (2008). https://doi.org/10.1007/s00208-008-0258-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0258-8

Mathematics Subject Classification (2000)

Navigation