Advertisement

Mathematische Annalen

, Volume 342, Issue 4, pp 789–831 | Cite as

Algébrisation des variétés analytiques complexes et catégories dérivées

  • Bertrand Toën
  • Michel VaquiéEmail author
Article

Résumé

Soit X un espace analytique complexe compact et lisse. Nous démontrons que X est algébrisable si et seulement si sa dg-catégorie dérivée cohérente bornée est saturée.

Keywords

Cela Nous Allons Analytiques Complex Condition Suivante Proposition Suivante 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anel, M., Toën, B.: Dénombrabilité des classes d’équivalences dérivées de variétés algébriques. Preprint math.AG/0611545Google Scholar
  2. 2.
    Artin M.: Algebraization of formal moduli II. Existence of modifications. Ann. Math. (2) 91, 88–135 (1970)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Banica, C., Stanasila, O.: Algebraic methods in the global theory of complex spaces, 296 pp. Translated from the Romanian. Editura Academiei, Bucharest. Wiley, London (1976)Google Scholar
  4. 4.
    Bondal A., Van Den Bergh M.: Generators and representability of functors in commutative and non-commutative geometry. Mosc. Math. J. 3(1), 1–36 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Grauert, H., Remmert, R.: Coherent analytic sheaves. Grundlehren der Mathematischen Wissenschaften 265, xviii+249 pp. Springer, Berlin (1984)Google Scholar
  6. 6.
    Hovey, M.: Model categories, Mathematical surveys and monographs, vol. 63, American Mathematical Society, Providence (1998)Google Scholar
  7. 7.
    Knutson D.: Algebraic Spaces, Lecture Notes in Mathematics, vol. 203. Springer, Heidelberg (1971)Google Scholar
  8. 8.
    Kontsevich, M., Soibelmann, Y.: Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I, arXiv Preprint math.RA/0606241Google Scholar
  9. 9.
    Revêtements étales et groupe fondamental, [Séminaire de géométrie algébrique du Bois Marie 1960–61, dirigé par A. Grothendieck, Documents Mathématiques (Paris) 3, Société Mathématique de France, Paris, 2003. xviii+327 ppGoogle Scholar
  10. 10.
    Schwede S., Shipley B.: Algebras and modules in monoidal model categories. Proc. Lond. Math. Soc. (3) 80, 491–511 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Toën B.: The homotopy theory of dg-caregories and derived Morita theory. Invent. Math. 167(3), 615–667 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Toën B., Vaquié M.: Moduli of objects in dg-categories. Ann. Sci. Ecole Norm. Sup. 40, 387–444 (2007)zbMATHGoogle Scholar
  13. 13.
    Toën B., Vezzosi G.: Homotopical algebraic geometry I: Topos theory. Adv. Math. 193, 257–372 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Toën, B., Vezzosi, G.: Homotopical algebraic geometry II: Geometric stacks and applications, Memoirs of the American Mathematics Society, vol. 902. American Mathematics Society, Providence (2008)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse, UMR CNRS 5219Université Paul SabatierToulouse Cedex 9France

Personalised recommendations