Advertisement

Mathematische Annalen

, 342:773 | Cite as

A uniform L estimate for complex Monge–Ampère equations

  • Sławomir KołodziejEmail author
  • Gang Tian
Article

Abstract

We show a priori L estimates for the solutions of the complex Monge–Ampère equation with respect to a sequence of Kähler forms degenerating in the limit. This is applied to prove the existence of generalized Kähler–Einstein metrics for some holomorphic fibrations by Calabi-Yau manifolds.

Keywords

Manifold Isoperimetric Inequality Schwarz Inequality Einstein Metrics Ideal Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Demailly J.-P., Paun M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. 159, 1247–1274 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kołodziej S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kołodziej S.: The Monge–Ampère equation on compact Kähler manifolds. Indiana U. Math. J. 52, 667–686 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Loomis L.H., Whitney H.: An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc. 55, 961–962 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Łojasiewicz, S.: Emsembles semi-analtiques. I.H.E.S. notes (1965)Google Scholar
  6. 6.
    Song J., Tian G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Inventiones math. 170, 609–653 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Song, J., Tian, G.: Canonical measures and Kähler–Ricci flow. preprint, math.DG/0802.2570Google Scholar
  8. 8.
    Tian G., Zhang Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chinese Ann. Math. B 27(2), 179–192 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Yau S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. Comm. Pure and Appl. Math. 31, 339–411 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of MathematicsJagiellonian UniversityKrakowPoland
  2. 2.Department of MathematicsPrinceton University, Fine HallPrincetonUSA

Personalised recommendations