Advertisement

Mathematische Annalen

, 342:749 | Cite as

A note on plurisubharmonic defining functions in \({\mathbb{C}^{n}}\)

  • J. E. Fornæss
  • A.-K. HerbigEmail author
Article

Abstract

Let \({\Omega\subset\subset\mathbb{C}^{n}}\) , n ≥ 3, be a smoothly bounded domain. Suppose that Ω admits a smooth defining function which is plurisubharmonic on the boundary of Ω. Then a Diederich–Fornæss exponent can be chosen arbitrarily close to 1, and the closure of Ω admits a Stein neighborhood basis.

Mathematics Subject Classification (2000)

32T35 32U05 32U10 

References

  1. 1.
    Boas H.P., Straube E.J.: Sobolev estimates for the \({\bar{\partial}}\)-Neumann operator on domains in \({\mathbb{C}^{n}}\) admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206, 81–88 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Catlin, D.W.: Global regularity of the \({\bar{\partial}}\) -Neumann problem. Complex analysis of several variables (Madison, Wis., 1982), 39–49, Proc. Sympos. Math. 41, Amer. Math. Soc., Providence, RI, (1984)Google Scholar
  3. 3.
    Diederich K., Fornæss J.E.: Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Inv. Math. 39, 129–141 (1977)zbMATHCrossRefGoogle Scholar
  4. 4.
    Diederich K., Fornæss J.E.: Pseudoconvex domains: an example with nontrivial nebenhülle. Math. Ann. 225(3), 275–292 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Diederich K., Fornæss J.E.: Pseudoconvex domains: existence of Stein neighborhoods. Duke Math. J. 44(3), 641–662 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Diederich K., Fornæss J.E.: Pseudoconvex domains with real-analytic boundary. Ann. Math. 107(2), 371–384 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fornæss J.E., Herbig A.-K.: A note on plurisubharmonic defining functions in \({\mathbb{C}^2}\) . Math. Z. 257(4), 769–781 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Herbig A.-K., McNeal J.D.: Regularity of the Bergman projection on forms and plurisubharmonicity conditions. Math. Ann. 336(2), 335–359 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    McNeal J.D.: A sufficient condition for compactness of the \({\bar{\partial}}\)-Neumann operator. J. Funct. Anal. 195(1), 190–205 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Range R.M.: A remark on bounded strictly plurisubharmonic exhaustion functions. Proc. AMS 81, 220–222 (1981)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Sibony, N.: Some aspects of weakly pseudoconvex domains. Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), 199–231Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations