Advertisement

Mathematische Annalen

, Volume 342, Issue 2, pp 467–486 | Cite as

Extreme values of zeta and L-functions

  • K. SoundararajanEmail author
Article

Abstract

We introduce a resonance method to produce large values of the Riemann zeta-function on the critical line, and large and small central values of L-functions.

Keywords

Dirichlet Series Automorphic Form Riemann Hypothesis Prime Number Theorem Fundamental Discriminant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balasubramanian R.: On the frequency of Titchmarsh’s phenomenon for ζ(s)-IV. Hardy–Ramanujan J. 9, 1–10 (1986)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Balasubramanian R., Ramachandra K.: On the frequency of Titchmarsh’s phenomenon for ζ(s)-III. Proc. Indian Acad. Sci. 86, 341–351 (1977)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Conrey J.B., Soundararajan K.: Real zeros of quadratic Dirichlet L-functions. Invent. Math. 150, 1–44 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Farmer D.W., Gonek S.M., Hughes C.P.: The maximum size of L-functions. J. Reine Angew. Math. 609, 215–236 (2007)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Granville A., Soundararajan K.: Large character sums. J. Am. Math. Soc. 14, 365–397 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hoffstein, J., Lockhart, P.: Omega results for automorphic L-functions. In: Automorphic Forms, Automorphic Representations, and Arithmetic. AMS Proc. Symp. Pure Math. 66, part 2, pp. 239–250 (1999)Google Scholar
  7. 7.
    Iwaniec, H.: Topics in classical automorphic forms. AMS Graduate Studies in Mathematics, 17, pp. xii+ 259 (1997)Google Scholar
  8. 8.
    Milicevic, D.: Large values of eigenfunctions on arithmetic hyperbolic manifolds. Ph.D. thesis, Princeton University (2006)Google Scholar
  9. 9.
    Montgomery H.L.: Extreme values of the Riemann zeta function. Comment. Math. Helv. 52, 511–518 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ng, N.: Extreme values of ζ′(ρ). 16 pp. e-print available at http://arxiv.org/abs/0706.1765
  11. 11.
    Rudnick Z., Soundararajan K.: Lower bounds for moments of L-functions. Proc. Natl. Acad. Sci. USA 102, 6837–6838 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rudnick, Z., Soundararajan, K.: Lower bounds for moments of L-functions: symplectic and orthogonal examples. In: Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory. AMS Proc. Sympos. Pure Math., 75, pp. 293–303 (2006)Google Scholar
  13. 13.
    Soundararajan K.: Non-vanishing of quadratic Dirichlet L-functions at s = 1/2. Ann. Math. 152, 447–488 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Soundararajan, K.: Moments of the Riemann zeta-function. Ann. Math. 11 pp. e-print available at http://arxiv.org/abs/math/0612106 (to appear)
  15. 15.
    Titchmarsh E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford University Press, New York (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations