Mathematische Annalen

, Volume 342, Issue 2, pp 255–271 | Cite as

Conjugations on 6-manifolds

  • Martin OlbermannEmail author


Conjugation spaces are spaces with an involution such that the fixed point set of the involution has \({\mathbb{Z} _2}\)-cohomology ring isomorphic to the \({\mathbb{Z} _2}\)-cohomology of the space itself, with the difference that all degrees are divided by two (e.g. \({\mathbb{C} {\rm P}^n}\) with the complex conjugation has \({\mathbb{R} {\rm P}^n}\) as fixed point set). One also requires that a certain conjugation equation is fulfilled. We give a new characterisation of conjugation spaces and apply it to the following realization problem: given M, a closed orientable 3-manifold, does there exist a simply connected 6-manifold X and a conjugation on X with fixed point set M? We give an affirmative answer.

Mathematics Subject Classification (2000)

57R91 55M35 55N91 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allday, C., Puppe, V.: Cohomological Methods in Transformation Groups. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  2. 2.
    Baues, H.J.: Obstruction Theory on Homotopy Classification of Maps. Lecture Notes in Mathematics, vol. 628. Springer, Heidelberg (1977)Google Scholar
  3. 3.
    Borel, A.: On periodic maps of certain K(π, 1). Collect. Pap. III, 57–60 (1983)Google Scholar
  4. 4.
    Conner P.E., Raymond F., Weinberger P. (1972) Manifolds with no periodic maps. In: Proceedings 2nd Conference Compact Transformation Groups, Part II, Springer Lecture Notes, vol. 299Google Scholar
  5. 5.
    Davis, M., Januskiewicz, T.: Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J. 62, 417–451 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Franz, M., Puppe, V.: Steenrod squares on conjugation spaces. arxiv: math.AT/050157 (2005)Google Scholar
  7. 7.
    Hausmann, J.-C., Holm, T., Puppe, V.: Conjugation spaces. Algebraic Geometric Topology 5, 923–964 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hausmann, J.-C., Knutson, A.: The cohomology ring of polygon spaces. Ann. de l’Institut Fourier 281–321 (1998)Google Scholar
  9. 9.
    Hambleton, I., Kreck, M., Teichner, P.: Nonorientable 4-manifolds with fundamental group of order 2. Transactions AMS, vol 344, Number 2 (1994)Google Scholar
  10. 10.
    Kreck, M.: Surgery and duality. Ann. Math. 149, 707–754 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kreck, M.: Simply connected asymmetric manifolds. Preprint (2007)Google Scholar
  12. 12.
    Nash, J.: Real algebraic manifolds. Ann. Math. 56, 405–421 (1952)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Olbermann, M.: Conjugations on 6-Manifolds. Ph.D. Thesis, University of Heidelberg (2007). Available at
  14. 14.
    Puppe, V.: Do manifolds have little symmetry? J. Fixed Point Theory Appl. 2(1), 85–96 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ranicki, A.: Algebraic and Geometric Surgery. Oxford University Press, Oxford Mathematical Monograph, Oxford (2002)zbMATHGoogle Scholar
  16. 16.
    Stong, R.E.: Notes on cobordism theory. Princeton University Press, Mathematical notes, Princeton (1968)zbMATHGoogle Scholar
  17. 17.
    Tognoli, A.: Su una congettura di Nash. Ann. Sci. Norm. Sup. Pisa 27, 167–185 (1973)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Wall, C.T.C.: Surgery on compact manifolds, 2nd edn. In: Ranicki, A.A. (eds) Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI (1999)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BonnBonnGermany
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations