Skip to main content
Log in

Dedekind–Carlitz polynomials as lattice-point enumerators in rational polyhedra

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study higher-dimensional analogs of the Dedekind–Carlitz polynomials \({c(u,v;a,b): = \sum\limits_{k = 1}^{b - 1} {u^{\left[ {\frac{{ka}}{b}} \right]} } v^{k - 1}}\), where u and v are indeterminates and a and b are positive integers. Carlitz proved that these polynomials satisfy the reciprocity law \({(v - 1)\,{\rm c}\,(u, v; a, b) + (u - 1)\,{\rm c}\,(v, u; b, a) = u^{a-1} v^{b-1} - 1,}\) from which one easily deduces many classical reciprocity theorems for the Dedekind sum and its generalizations. We illustrate that Dedekind–Carlitz polynomials appear naturally in generating functions of rational cones and use this fact to give geometric proofs of the Carlitz reciprocity law and various extensions of it. Our approach gives rise to new reciprocity theorems and computational complexity results for Dedekind–Carlitz polynomials, a characterization of Dedekind–Carlitz polynomials in terms of generating functions of lattice points in triangles, and a multivariate generalization of the Mordell–Pommersheim theorem on the appearance of Dedekind sums in Ehrhart polynomials of 3-dimensional lattice polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almkvist, G.: Asymptotic formulas and generalized Dedekind sums. Exp. Math. 7(4), 343–359 (1998)

    MATH  MathSciNet  Google Scholar 

  2. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beck, M.: Geometric proofs of polynomial reciprocity laws of Carlitz, Berndt, and Dieter. Diophantine analysis and related fields 2006, Sem. Math. Sci., vol. 35, Keio University, Yokohama, pp. 11–18 (2006)

  4. Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. Springer, New York (2007)

    Google Scholar 

  5. Berndt, B.C., Dieter, U.: Sums involving the greatest integer function and Riemann–Stieltjes integration. J. Reine Angew. Math. 337, 208–220 (1982)

    MATH  MathSciNet  Google Scholar 

  6. Brion, M.: Points entiers dans les polyèdres convexes. Ann. Sci. École Norm. Sup. (4) 21(4), 653–663 (1988)

    MATH  MathSciNet  Google Scholar 

  7. Carlitz, L.: Some polynomials associated with Dedekind sums. Acta Math. Acad. Sci. Hungar. 26(3–4), 311–319 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chapman, R.: Reciprocity laws for generalized higher dimensional Dedekind sums. Acta Arith. 93(2), 189–199 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Dedekind, R.: Erläuterungen zu den Fragmenten xxviii. Collected Works of Bernhard Riemann, pp. 466–478. Dover, New York (1953)

    Google Scholar 

  10. Dieter, U.: Das Verhalten der Kleinschen Funktionen. \({\log\sigma \sb{g,h}(\omega \sb{1}, \omega \sb{2})}\) gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen. J. Reine Angew. Math. 201, 37–70 (1959)

    MATH  MathSciNet  Google Scholar 

  11. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MATH  MathSciNet  Google Scholar 

  12. Girstmair, K.: Some remarks on Rademacher’s three-term relation. Arch. Math. (Basel) 73(3), 205–207 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Hirzebruch, F., Zagier, D.: The Atiyah–Singer Theorem and Elementary Number Theory. Publish or Perish Inc., Boston (1974)

    MATH  Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming. vol. 2, 2nd edn., Addison-Wesley, Reading (1981)

  15. Meyer, C.: Über einige Anwendungen Dedekindscher Summen. J. Reine Angew. Math. 198, 143–203 (1957)

    MathSciNet  Google Scholar 

  16. Meyer, W., Sczech, R.: Über eine topologische und zahlentheoretische Anwendung von Hirzebruchs Spitzenauflösung. Math. Ann. 240(1), 69–96 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mordell, L.J.: Lattice points in a tetrahedron and generalized Dedekind sums. J. Indian Math. Soc. (N.S.) 15, 41–46 (1951)

    MathSciNet  MATH  Google Scholar 

  18. Pommersheim, J.E.: Toric varieties, lattice points and Dedekind sums. Math. Ann. 295(1), 1–24 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rademacher, H.: Generalization of the reciprocity formula for Dedekind sums. Duke Math. J. 21, 391–397 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rademacher, H.: Zur Theorie der Dedekindschen Summen. Math. Z. 63, 445–463 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rademacher, H.: Some remarks on certain generalized Dedekind sums. Acta Arith. 9, 97–105 (1964)

    MathSciNet  Google Scholar 

  22. Solomon, D.: Algebraic properties of Shintani’s generating functions: Dedekind sums and cocycles on PGL2(Q). Compos. Math. 112(3), 333–362 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Beck.

Additional information

Research of Haase supported by DFG Emmy Noether fellowship HA 4383/1. We thank Robin Chapman, Eric Mortenson, and an anonymous referee for helpful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, M., Haase, C. & Matthews, A.R. Dedekind–Carlitz polynomials as lattice-point enumerators in rational polyhedra. Math. Ann. 341, 945–961 (2008). https://doi.org/10.1007/s00208-008-0220-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0220-9

Mathematics Subject Classification (2000)

Navigation