Skip to main content
Log in

An extension of the Weil–Petersson metric to quasi-Fuchsian space

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define a natural semi-definite metric on quasi-fuchsian space, derived from geodesic current length functions and Hausdorff dimension, that extends the Weil–Petersson metric on Teichmüller space. We use this to describe a metric on Teichmüller space obtained by taking the second derivative of Hausdorff dimension and show that this metric is bounded below by the Weil–Petersson metric. We relate the change in Hausdorff dimension under bending along a measured lamination to the length in the Weil–Petersson metric of the associated earthquake vector of the lamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Graduate Texts in Mathematics, vol. 137. Springer, Heidelberg (1992)

    Google Scholar 

  2. Bonahon F. (1988). The geometry of Teichmüller space via geodesic currents. Invent. Math. 92: 139–162

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonahon F. (1996). Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form. Ann. Fac. Sci. Toulouse Math. 5(6): 233–297

    MATH  MathSciNet  Google Scholar 

  4. Bowditch B.H. (1993). Geometrical finiteness for hyperbolic groups. J. Funct. Anal. 113: 245–317

    Article  MATH  MathSciNet  Google Scholar 

  5. Bowen R. (1972). Periodic orbits for hyperbolic flows. Am. J. Math. 94: 1–30

    Article  MATH  MathSciNet  Google Scholar 

  6. Bowen R. (1979). Hausdorff dimension of quasi-circles. Publ. Math. IHES 50: 11–25

    MATH  MathSciNet  Google Scholar 

  7. Bridgeman M. and Taylor E. (2005). Patterson–Sullivan measures and quasiconformal deformations. Commun. Anal. Geom. 13(3): 561–589

    MATH  MathSciNet  Google Scholar 

  8. Douady A. and Earle C. (1986). Conformally natural extensions of homeomorphisms of the circle. Acta Math. 157: 23–48

    Article  MATH  MathSciNet  Google Scholar 

  9. Epstein, D., Marden, A.: Convex hulls in hyperbolic space, a Theorem of Sullivan, and measured pleated surfaces. In: Analytical and Geometrical Aspects of Hyperbolic Space. Cambridge University Press, London (1987)

  10. Hamenstädt U. (2002). Ergodic properties of function groups. Geom. Dedic. 93(1): 163–176

    Article  MATH  Google Scholar 

  11. Hirsch F. and Lacombe G. (1999). Elements of Functional Analysis, Graduate Texts in Mathematics. Springer, Heidelberg

    Google Scholar 

  12. Kerckhoff S. (1985). Earthquakes are analytic. Comment. Math. Helv. 60: 17–30

    Article  MATH  MathSciNet  Google Scholar 

  13. Marden A. (1974). The geometry of finitely generated Kleinian groups. Ann. Math. 99: 383–462

    Article  MathSciNet  Google Scholar 

  14. Maskit B. (1987). Kleinian Groups, Graduate Texts in Mathematics. Springer, Heidelberg

    Google Scholar 

  15. McMullen, C.: Complex earthquakes and Teichmüller theory. J. AMS 11 (1998)

  16. McMullen, C.: Thermodynamics, dimension and the Weil–Petersson metric (2006, preprint)

  17. Nicholls P. (1989). The Ergodic Theory of Discrete Groups. Cambridge University Press, London

    MATH  Google Scholar 

  18. Ruelle D. (1982). Repellers for real analytic maps. Ergod. Theory Dyn. Syst. 2: 99–107

    Article  MATH  MathSciNet  Google Scholar 

  19. Sigmund K. (1974). On dynamical systems with the specification property. Trans. Am. Math. Soc. 190: 285–299

    Article  MATH  MathSciNet  Google Scholar 

  20. Sullivan D. (1984). Entropy, Hausdorff measures old and new and limit sets of geometrically finite Kleinian groups. Acta Math. 153: 259–277

    Article  MATH  MathSciNet  Google Scholar 

  21. Thurston, W.P.: The geometry and topology of 3-Manifolds. Lecture Notes, Princeton University (1979)

  22. Wolpert S. (1986). Thurston’s Riemannian metric for Teichmüller space. J. Diff. Geom. 23: 173–174

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Bridgeman.

Additional information

Martin Bridgeman research supported in part by NSF grant DMS 0305634. Edward C. Taylor research supported in part by NSF grant DMS 0305704.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridgeman, M.J., Taylor, E.C. An extension of the Weil–Petersson metric to quasi-Fuchsian space. Math. Ann. 341, 927–943 (2008). https://doi.org/10.1007/s00208-008-0218-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0218-3

Keywords

Navigation