Skip to main content
Log in

The local and global parts of the basic zeta coefficient for operators on manifolds with boundary

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For operators on a compact manifold X with boundary ∂X, the basic zeta coefficient C 0(B, P 1,T ) is the regular value at s = 0 of the zeta function \({Tr(B P_{1,T}^{-s})}\) , where B = P + + G is a pseudodifferential boundary operator (in the Boutet de Monvel calculus)—for example the solution operator of a classical elliptic problem—and P 1,T is a realization of an elliptic differential operator P 1, having a ray free of eigenvalues. Relative formulas (e.g., for the difference between the constants with two different choices of P 1,T ) have been known for some time and are local. We here determine C 0(B, P 1,T ) itself (with even-order P 1), showing how it is put together of local residue-type integrals (generalizing the noncommutative residues of Wodzicki, Guillemin, Fedosov–Golse–Leichtnam–Schrohe) and global canonical trace-type integrals (generalizing the canonical trace of Kontsevich and Vishik, formed of Hadamard finite parts). Our formula generalizes a formula shown recently by Paycha and Scott for manifolds without boundary. It leads in particular to new definitions of noncommutative residues of expressions involving log P 1,T . Since the complex powers of P 1,T lie far outside the Boutet de Monvel calculus, the standard consideration of holomorphic families is not really useful here; instead we have developed a resolvent parametric method, where results from our calculus of parameter-dependent boundary operators can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math. 126, 11–51 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cardona, A., Ducourtioux, C., Magnot, J.P., Paycha, S.: Weighted traces on algebras of pseudodifferential operators. Infin. Dimen. Anal. Quantum Probab. Relat. Top. 5, 503–540 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cardona, A., Ducourtioux, C., Paycha, S.: From tracial anomalies to anomalies in quantum field theory. Commun. Math. Phys. 242, 31–65 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Fedosov, B.V., Golse, F., Leichtnam, E., Schrohe, E.: The noncommutative residue for manifolds with boundary. J. Funct. Anal. 142, 1–31 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Grubb, G.: Functional calculus of pseudodifferential boundary problems, (Progress in Math. vol. 65, Second Edition Birkhäuser, Boston, 1996, first edition issued 1986)

  6. Grubb, G.: Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems. Arkiv f. Mat. 37, 45–86 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grubb, G.: A resolvent approach to traces and zeta Laurent expansions. Contemp. Math. 366 (2005), 67–93, corrected version in arXiv: math.AP/0311081

    Google Scholar 

  8. Grubb, G.: On the logarithm component in trace defect formulas. Commun. Part. Differ. Equ. 30, 1671–1716 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grubb, G.: Remarks on nonlocal trace expansion coefficients, “Analysis, Geometry and Topology of Elliptic Operators,” (B. Booss-Bavnbek, S. Klimek, M. Lesch, W. Zhang, World Scientific, Singapore 2006), 215–234, arXiv: math.AP/0510041

  10. Gaarde, A., Grubb, G.: Logarithms and sectorial projections for elliptic boundary problems, arXiv:math/0703878. Math. Scand. (2008) (to appear)

  11. Grubb, G., Schrohe, E.: Trace expansions and the noncommutative residue for manifolds with boundary. J. Reine Angew. Math. 536, 167–207 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Grubb, G., Schrohe, E.: Traces and quasi-traces on the Boutet de Monvel algebra. Ann. Inst. Fourier 54, 1641–1696 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Grubb, G., Seeley, R.T.: Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems. Invent. Math. 121, 481–529 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grubb, G., Seeley, R.T.: Zeta and eta functions for Atiyah-Patodi-Singer operators. J. Geom. Anal. 6, 31–77 (1996)

    MATH  MathSciNet  Google Scholar 

  15. Guillemin, V.: A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. Math. 102, 184–201 (1985)

    Article  MathSciNet  Google Scholar 

  16. Kontsevich, M., Vishik, S.: Geometry of determinants of elliptic operators. In: Gindikin, S. et al. (eds.) Functional Analysis on the Eve of the 21’st Century (Rutgers Conference in honor of I. M. Gelfand 1993), Vol. I, Progr. Math. 131, pp 173–197. Birkhäuser, Boston (1995)

  17. Lesch, M.: On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols. Ann. Global Anal. Geom. 17, 151–187 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mathai, V., Melrose, R.B., Singer, I.M.: Fractional analytic index. J. Differ. Geom. 74, 265–292 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Melrose, R.B.: The Atiyah–Patodi–Singer Index Theorem. A. K. Peters Ltd., Wellesley (1993)

    MATH  Google Scholar 

  20. Melrose, R.B., Nistor, V.: Homology of pseudodifferential operators I. Manifolds with boundary, manuscript, arXiv: funct-an/9606005

  21. Okikiolu, K.: The multiplicative anomaly for determinants of elliptic operators. Duke Math. J. 79, 723–750 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Paycha, S., Scott, S.: A Laurent expansion for regularized integrals of holomorphic symbols. Geom. Funct. Anal. 17, 491–536 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Seeley, R.T.: Norms and domains of the complex powers \({A_B^s}\) . Am. J. Math. 93, 299–309 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wodzicki, M.: Local invariants of spectral asymmetry. Invent. Math. 75, 143–178 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Grubb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grubb, G. The local and global parts of the basic zeta coefficient for operators on manifolds with boundary. Math. Ann. 341, 735–788 (2008). https://doi.org/10.1007/s00208-008-0211-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0211-x

Mathematics Subject Classification (2000)

Navigation